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Hypertelescopes in space

• Many apertures: 
• direct imaging with high resolution and sensitivity
•  general observing on compact sources or clusters
• coronography, deep fields

hypertelescope version of 
TPF-I    (Boeing/SVS study 
for NASA)



•   Initial optical modelling : Optical model 
•  needs adapted codes for mapping wavefront 
•  errors 
•On Earth: 
•    driving a complex robot: 
• active co-parabolisation 
• fine centering of sources in multi-field grid  

•    adaptive cophasing needed on Earth:  
• piston sensing with 3D Fast Fourier transforms 
• actuators driving 

•    image processing : 
• de-convolving the pseudo-convolved image ( Mary  2015 ) 
• science interpretation  

•   In space:  
• deployment and control of mirror flotilla 
• pointing 
• data compression and transmission 

Artificial  intelligence needed for modelling, driving and 
exploiting hypertelescopes 

Zemax model of a 9-aperture hypertelescope
    ( Zongliang Xie et al. , in preparation)



Interferometer: 
a poor man’s giant telescope  

• Still works with only two elements : image is degraded, but 
resolution is not affected

Fizeau 
Interferometer



• deux télescopes de 1,5m, mobiles 
• précurseur du VLTI 

Grand interférometre à deux télescopes ( GI2T)  
Calern Observatory 1976-2007

precursor of VLTI in Chile

γ Cass spectrum with interference fringes 
( Mourard, Bosc, Labeyrie, Koechlin, Saha, Nature, 1989 )



Steps toward hypertelescopes, on Earth and in space

• “Ubaye Hypertelescope” prototype partially built & tested 
• proposed terrestrial “Extremely Large Hypertelescope” ( ELHyT) 

with kilometric meta-aperture 
• Space versions proposed to NASA & ESA, also lunar version 
•  https://lise.oca.eu/IMG/file/

WhitepaperProposalHypertelescope.pdf 

simulated imaging of an exo-Earth 
 at 3pc, with a 100km 
hypertelescope flotilla in space

https://lise.oca.eu/IMG/file/WhitepaperProposalHypertelescope.pdf
https://lise.oca.eu/IMG/file/WhitepaperProposalHypertelescope.pdf
https://lise.oca.eu/IMG/file/WhitepaperProposalHypertelescope.pdf
https://lise.oca.eu/IMG/file/WhitepaperProposalHypertelescope.pdf


Fizeau interference with multiple apertures  
point source

• The peak/halo ratio improves with more apertures
• but diffraction from each sub-aperture attenuates the interference peak
• … a problem solved with  «  hypertelescopic imaging » 
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« Do it yourself » Fizeau imaging with a multiple aperture

15 apertures 50 apertures 235 apertures 600 apertures  full aperture

Aluminum 
foil

 random 
pinholes

•   image improves with more apertures …

•   … but remains drowned in a  halo …

•   … caused by diffraction through the small sub-apertures, and which takes energy 
away from the image…

•  … a loss avoided with "hypertelescope" imaging 
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• crowded image 
with the large 
apertures 

Apertures 1000-star cluster

Simulated Fizeau images comparing 605 small apertures to 6 large ones,  
at  equal collecting area & meta-aperture diameter



Simulated Fizeau imaging:  
30 apertures and 1000 stars 
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Extended Fizeau imaging with
36 subapertures,  450 stars
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Fizeau imaging simulation: 
1000-element apodizing spiral aperture & 1000 stars
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Hypertelescope  
(Labeyrie, 1996;  Lardière et al., 2006, 
Patru et al. 2006, Mourard et al, Martinache 2004.   Tcherniavski 2014,
Nakai et al. 2016  )

• Directly-imaging interferometer,  multi-aperture, with a pupil densifier
• Forms direct images….
• …. in a smaller field than a Fizeau interferometer,  but intensified

Exit pupil

aperture



Principle of the hypertelescope  
or   « multi-aperture imaging interferometer with pupil densifier  »  

 Fizeau 
focus densifier

Diluted optics

camera

Case of  aperture 
Annular          periodic grid



Off-axis star
•    Its image is shifted more than the envelope…

•     … and eventually moves out of it  =>   limitation of "direct imaging field" 

Fizeau 
focus

stepped wave

camera

flat wave

densifier



20  subapertures



• pupil densifier 
shrinks the image’s 
diffractive envelope

• thus  concentrating its  
light …

• …and shrinking the 
field of view 

Simulated hypertelescopic imaging

18 stars direct image
200 subapertures

densified pupil

limit of « Direct 
Imaging Field »



Interferometer flotilla:    
   Why many apertures ?  
      (Labeyrie et al., Experimental Astronomy, 2008) 

•   Image becomes crowded if number of  point sources in Direct Imaging Field  exceeds N
2

 
•   Science vs. mirror size  d ,  at given cost C
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•   Strong science gain with decreasing d
•

  

Many small mirrors better than few large ones, at given collecting area and meta-aperture 
diameter

•  same resolution and limiting magnitude
•  improved dynamic range, crowding limit, Direct Imaging Field 
•  cost saving 

• But how small ?    d= 30mm diffracts a 1.5m  lobe  at 100km 
• 40,000 mirrors of 30mm needed for the same collecting area as JWST : feasible with   

« Laser-trapped flotilla «  ?  
•      
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 Testing of « Ubaye hypertelescope » 

photo Wassila Dali-Ali

• following a smaller prototype at Haute-Provence ( Le Coroller et al.  2014)

• under test with two 15cm mirrors, expandable to hundreds
• for a meta-aperture diameter up to 200m



« Ubaye Hypertelescope » concept

Avalanches 

• 800m carrier cable ( Kevlar 6mm) pendulating, and 6 oblique wires 
• suspended focal gondola driven by 6 oblique wires and 

winches



1-

spherical geometry



view from North

cable tie

coudé focus  

winch

200m meta-aperture 
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Tache 
d ’Airy

Cophasing hypertelescopes
• Wavefront control needed for: 

–  coherencing, 
–  interference 
–  cophasing :  Airy peak 
– easier in space ! 

• Tolerances: 
λ2  / Δλ  for coherence

            λ/4 for  cophasing
      λ/1000 or  λ/5000 for exoplanet coronography
     



Formalism of « dispersed speckle wave sensing »  
(Martinache 2004, Borkowski et al.  2005)
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• The Fourier Transform of the dispersed image is the autocorrelation 
of  τ(u,v,δ) , tridimensional 

• Inversible for calculating δ (u,v) if  aperture is non redundant 
• if redundant: use Fienup’s algorithm  (Martinache, 2004 )
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Dispersed-speckle piston sensor 
(Borkowski, et al. , 2005) 

• series of spectra from vertically adjacent speckles ( red at right)  
• … to build a spectro-image  cube ( x,y, 1/λ)

•  its Fourier Transform is calculated in 3 dimensions  =>   
•  laboratory simulated 



Dispersed speckle:  lab simulation with smaller piston errors



Extremely Large Hypertelescope ( ELHyT )  in Himalayan valley
• focal cameras  carried by drones 
• spherical or active paraboloïdal meta-mirror  



For space:  « Laser-Trapped Hypertelescope Flotilla »: 
 

Pellicle Beam Splitter 
produced by National 
Photocolor Corp.   



      "Laser-Trapped Hypertelescope Flotilla"  
(Labeyrie et al., Experimental Astronomy, 2009 )

- Meta-aperture size to 100,000km ? 



Laser-trapped mirror

•   interference of laser beams modulates the output intensities
•   radiation pressure P/c   reverses vs. position…
•  … at  λ/4 intervals 
• cyclic blueward color shift  for "pumping" toward central fringe

Dichroic coating
Semi-reflective at laser wavelengths
Reflective at star wavelengths

    Laser fringes:
 monochromatic
white

pair of incident laser beams, coherent and 
repeatedly blue-ward color-shifted  



Pellicle beam-splitters for  
 "Laser Trapped Hypertelescope"

 Pellicle

Semi-reflective for 
laser light

Reflective for star 
light

 glass frame,   
prism profiled

Self-centering in laser beam
F



Self-centering in laser beam  
 through "laser tweezer" effect  

force

 attitude also self-adjusting

torquing 
force



Solution with only 2 or 3 herder spaceships

•   Requires a delay line, or virtual delay line,
 attached to the laser
•    deployable from  same satellite as camera



Beam fanning optics

to one 
trapped 
mirror 

lens 
array

laser beam 
to S2 & S3 

returning 
beam from 
S2



Laser-trapped mirror element

Mirror

Mirror centerFr damper

Ft

• coarse alignment by laser 
radiation pressure on  peripheral 
Fresnel lens
• laser deviation translates 
• laser reflection by prismatic 

facets controls the coarse 
attitude

• fine alignment and cophasing by 
standing waves

• further modelling and lab testing 
needed  



Laser-Trapped Hypertelescope Flotilla: 
                          Typical sizing  

• Flotilla span  :    1 kilometer 
• Size of mirror elements:    30mm,   mass 0.5 gram
• Laser power :  3mW per mirror 
•  max. acceleration:   0.02 micron.s-2
• Escape velocity of mirrors ( axial) :   30nm/s 
• Collecting area of  6.5m  JWST matched with 40,000 mirrors
      … requiring a 120 Watt  laser.  
• Delivery package for mirrors:  volume < 0.2 m3
• Deployment:   with pair of directed laser beams 



Operation at L2 in Earth penumbra

• Laser located in full sunlight, at edge of penumbra
• Full sky coverage in 6 months  with continuous scan, transverse to Sun direction 

L2

Earth



Lab testing initiated in high vacuum ,  with torsion wire suspension
                                                                                                    ( Bortolozzo & Residori )

Torsion wire

Optical 
windows

beam splitter

-   magnetic levitation also 
proposed by P.Riaud 



Hypertelescopes in space: 
        Searching for life on exoplanets
• global atmospheric spectroscopy is not conclusive 

• multi-pixel spectro-imaging may detect seasonal 
changes analogous to the « indian summer » 

simulated image of an exo-Earth at 3 pc 
100km hypertelescope , with 150 apertures of 3m 
enhanced contrast by subtracting a uniform level



• Examples:  
–  marine algal bloom 
–  indian summer  

• fast varying 

Signatures of exo-life 



• Condition for multipixel imaging of  exoplanet : 
           N  >  Fstar/planet    Rplanet   C 

• Example: 1000 mirrors for 30x30 resels on exo-Earth 10-10 at 
3pc, if  coro  gain = 1010

 

Searching for life:   exoplanet coronagraphy 
with the Exo-Earth Imager hypertelescope  

 number of subapertures       resels in area      coronographic gain



100,000km flotilla with hierachical beam combiner for   
« Neutron Star Imager »    

• reduces mirror sizes needed for primary array and beam combiners



Conclusions and future work  
     •   space concepts for large hypertelescopes must be further validated… 

… through numerical simulation, together with dynamic       
behaviour of flotilla 
           … and in the laboratory
•     also testable in low Earth orbit ( ISS ? )

•   laser-trapping concept may provide a low-cost route toward large 
interferometer flotillas
•   science:  a large gain is expected with the numerous mirrors and large 
meta-aperture flotillas in space
•   … even on very faint sources
•   …  coronagraphy also needed for multi-pixel imaging of exoplanets


