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Sparsity

e Signal processing: decompose complex signals using elementary
functions which are then easier to manipulate.
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e Signal processing: decompose complex signals using elementary
functions which are then easier to manipulate.

“+oo

x(t)= > aipi(t)

i=—o00

e Fourier transform (1768)
— Uncertainty principle: the energy spread of a function and its Fourier
transform cannot be simultaneously arbitrarly small.
— DFT and FFT (Gauss 1805, Cooley-Tukey 1965).

e Wavelets transform: multiresolution
— |. Daubechies: Compact support wavelet (1988).
— DWT and Mallat recursive algorithm (1989).
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Sparsity

e Signal processing: decompose complex signals using elementary
functions which are then easier to manipulate.

+oo
x(t) = Z aijpi(t) = Sparse = Few non-zero «;

i=—o00

e Fourier transform (1768)
— Uncertainty principle: the energy spread of a function and its Fourier
transform cannot be simultaneously arbitrarly small.
— DFT and FFT (Gauss 1805, Cooley-Tukey 1965).

e Wavelets transform: multiresolution
— |. Daubechies: Compact support wavelet (1988).
— DWT and Mallat recursive algorithm (1989).

2/41



Sparsity

Example: Time-Frequency representation
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Sparsity

Example: Time-Frequency representation
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Wavelet transform
e Discrete setting: images on a grid Q = {1,..., N1} x {1,..., No}

X = (an,nz)(nh"z)eQ

— Vectorized representation denoted x € RN with N = Ny No.
! 7 7 ] i e J
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Wavelet transform
e Discrete setting: images on a grid Q = {1,..., N1} x {1,..., No}

X = (Xn17"2)(n1,n2)€Q

— Vectorized representation denoted x € RN with N = Ny No.

e Wavelets:
e sparse representation of most natural signals/images.
e DWT, denoted F € RV*N
— orthonormal transform: FF* = F*F = |.
— filterbank implementation:

L1 I8} LH1 LH1 LH1

Original Image — — — RN
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Wavelet transform
e Discrete setting: images on a grid Q = {1,..., N1} x {1,..., No}

X = (an,nz)(nh'b)GQ

— Vectorized representation denoted x € RN with N = Ny No.

o Wavelets:
e sparse representation of most natural signals/images.
e DWT, denoted F € RV*N

— orthonormal transform: FF* = F*F = |[.

— filterbank implementation:
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Wavelet shrinkage
(Donoho-Jonhstone, 1992)

X a = Fx soft(Fx)

= |dentity
—Soft-thresholding
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Wavelet shrinkage
(Donoho-Jonhstone, 1992)

soft(Fx)

softy(ar) = (max{|aj| — A, O}sign(o@)iEQ Z Softthveshokding
1
= arg min Sy — a3+ A |l .
i
——
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Wavelet: history
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evolutions in dynamical networks,” 2018, arXiv:1707.02114)
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Wavelet hlstory
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Inverse problems
[Microscopy, ISBI Challenge 2013, F. Soulez]

Original image
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Inverse problems
[Microscopy, ISBI Challenge 2013, F. Soulez]

Original image Degraded image
x € RN z = Py(HxX) € RM

e H e RM*N: matrix associated with the degradation operator.
e P,: RM 5 RM: noise degradation with parameter o

(e.g. Poisson noise).

Inverse problem : Find an estimate X close to X from the observations z.
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Inverse problems

Inverse problem : Find an estimate X close to X from the observations z.

8/41

e Inverse filtering (if M = N and H is invertible)
X=H1z
= HY(Hx+b) « if bcRM is an additive noise
=x+H b

— Closed form expression, but amplification of the noise if H is
ill-conditioned (ill-posed problem).




Inverse problems

Inverse problem : Find an estimate X close to X from the observations z.

e Inverse filtering

e Variational approach: [X € Argmin L(Hx, z) + AR(Fx)
xERN

e [o(H): class of convex, lower semi-continuous, proper functions from
RN to ]—o0, +0o0].

e L(Hx,z): data fidelity term (in [o(RM)),

e R(Fx): regularization term (in [o(R")),

e )\ > 0: regularization parameter.
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Inverse problems

Inverse problem : Find an estimate X close to X from the observations z.

e Inverse filtering

e Variational approach: [X € Argmin L(Hx, z) + AR(Fx)
xERN

e [o(H): class of convex, lower semi-continuous, proper functions from
RN to ]—o0, +0o0].

L(Hx,z): data fidelity term (in [o(RM)),

R(Fx): regularization term (in [o(R")),

A > 0: regularization parameter.

Example: ¢1-norm to deal with sparsity

- 1
X € Argmin=||Hx — z||3 + \||Fx||1
x€R 2

— Soft-thresholding : H = Id (closed-form expression)
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Bayesian interpretation

e v = Hx = (vp)neq: realization of a random vector V.

e z: realization of a random vector Z.

e o= Fx = (aj)jer: realization of a random vector A = (A;);er having
independent components.

MAP estimator (Maximum A Posteriori)
maximize P(V=Hx|Z=2)
maxlixmize P(Z=z|V =HFa) - P(A=a)
miniamize —InP(Z=z|V =HF«a)- Z Inpa, ()
ieT

Data fidelity —_—
A priori
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Bayesian interpretation

0.1
—Diagonal coefs.
0,05
0 L
-40 -20 0 20
Wavelet coefficients Probability density function
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Bayesian interpretation

MAP estimator (Maximum A Posteriori)
minimize —InP(X =x |V = HF*a) — Z Inpa, ()

Data fidelity &g o
A priori
where
_ TR [HF* o — 2|3
P(Z=2| V= HF"0) = G vars op{ - 2]
and 1
Pa(a;) = = exp{—Ailail}
mlmmlze —HHF*a —z||5 + Z Ailal
ieT

= “there can be other admissible Bayesian interpretations” (Gribonval, 2011)
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Choice of L, R and F

Synthesis formulation

X =F*a with @€ Argmin L(HF*a,z) + AR(a) A>0

Analysis formulation X € Argmin L£(Hx, z) + \R(Fx) A>0
X

e Analysis versus Synthesis
e Equivalence for F orthonormal basis.
e The analysis formulation is a particular case of the synthesis
formulation.

e Few numerical comparisons.

(Elad, Milanfar, Ron, 2007) (Chaari, Pustelnik, Chaux, Pesquet, 2009)
(Selesnick, Figueiredo, 2009), (Carlavan, Weiss, Blanc-Féraud, 2010)
(

Pustelnik, Benazza-Benhayia, Zheng, Pesquet, 2010)
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Choice of L, R and F

Observations | oc g | 93.46 | 21.23 | 10.71 | 18.49
v 27.10 | 26.33 | 25.38 | 24.77 | 24.53
DICW ®) 27.50 | 26.70 | 25.77 | 25.25 | 25.16
Curvelets (R) 27.40 | 2658 | 25.40 | 25.02 | 2487
ROWT (® 77.60 | 26.47 | 25.70 | 04.78 | 4.5

RDWT + Curvelets (R) | 27.58 | 26.65 | 25.63 | 25.02 | 24.78
DTCW + Curvelets (R) | 27.44 | 26.65 | 25.71 | 25.21 | 25.12
RDWT + DTCW (R) 27.77 | 26.70 | 25.72 | 25.09 | 24.86

DTCW (P) 27.73 | 26.78 | 2583 | 25.24 | 25.15
Curvelets (P) 27.50 | 26.55 | 25.47 | 24.95 | 24.78
RDWT (P) 27.60 | 26.20 | 25.09 | 24.33 | 23.91

RDWT + Curvelets (P) | 27.66 | 26.56 | 25.43 | 24.80 | 24.50
DTCW + Curvelets (P) | 27.77 | 26.81 | 25.74 | 25.14 | 24.96
RDWT + DTCW (P) 2797 | 26.84 | 25.58 | 24.75 | 24.33

Tableau 1. PSNR en dB des différentes régularisations utilisées sur I'image Barbara.

(P) désigne un a priori de parcimonie tandis que (R) désigne un a priori de régularité.
(extracted M. Carlavan, P. Weiss, L. Blanc-Féraud " Régularité et parcimonie pour
les problemes inverses en imagerie : algorithmes et comparaisons”, Traitement du
Signal, sept. 2010.) (P) Synthesis, (R) Analysis
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Choice of L, R and F

Choice for F (analysis):

e Total variation: horizontal/vertical gradient.

e Hessian operator: second order derivative along horizontal, diagonal
and vertical direction.

e Nonlocal total variation: weighted nonlocal gradients (Gilboa, Osher,
2008)(Bougleux, Peyré, Cohen, 2011)

e Local dictionaries of patches
(Boulanger, Pustelnik, Condat, Piolot, Sengmanivong, 2018)

Imags Dictionary collection

e ~
1]

Neighborhaod

.

Patch

Neighborhood
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Choice of L, R and F

Choice for F (synthesis):
o X-lets (webpage L. Duval) (Jacques, Duval, Chaux, Peyré, 2011)

e Sparse coding: Dictionary of patches: set of elementary signals
(Aharon, Elad, Bruckstein, 2006)

() a=1

Fic. 6.1. A learned 3-scales global dictionary, which has been trained over a large database of

natural images.

(extracted from Mairal, Sapiro, Elad, learning multiscale sparse

representations for image and video restoration, 2007)
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Choice for R:

e f1-norm: R = - |1

16/41
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Choice of £, R and F

Choice for R:
e (1-norm: R = || - |]1
 Mixed-norm: R =3_ ¢ [[0gllq with g > 1.
e Non-overlapping groups: e.g. TV
e Overlapping groups: Tree-structure (Zhao, Rocha, Yu, 2007), union of
groups (Jacob, Obozinski, Vert, 2009).

o ————— ——————

(=]
Oe2
Ee
Oe
Oes
Oes

.,
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Choice of L, R and F

Choice for R:
e f1-norm: R = - |1
e Mixed-norm: R =3_ ¢ [[0gllq with g > 1.

e Non-overlapping groups: e.g. TV
o Overlapping groups: Tree-structure (Zhao, Rocha, Yu, 2007), union of

groups (Jacob, Obozinski, Vert, 2009).

e Schatten/Nuclear norm: R = || - ||«

e Non-convex:

| - |9 with g €]0,1[ (Frank, Friedman, 1993)

Log penalty: log(] - | + &) (Candes, Wakin, Boyd, 2008)

Several others (Nikolova, 2007)

Non-convex penalties leading to convex criterion (Parekh, Selesnick,

2015)
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Choice of L, R and F

Choice for R:

min
mwit+mwr=z

w2

Ll-norm ~
7

lwi| + [wa|
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Choice of £ and R

e Image degraded with
Poisson noise
e.g. tomography,
microscopy

e Poisson likelihood

P(z=z|V=HFa)= [[ 22T D0 (ppeq),)m

Z,!
nelQ) a

e Data fidelity term: Kullback-Leibler divergence

L(HF*a,z) = Zwﬂ((HF*a)ﬂ) where  ,(va) = —zpInov, +ov,

ﬂeﬁ Vi

(Combettes,Pesquet,2007) (Setzer, Steidl, Teuber, 2010) (Figueiredo, Bioucas-Dias,

2010) (Pustelnik, Chaux, Pesquet, 2011) (Antoine, Aujol, Boursier, Mélot, 2012)
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Choice of £, R and F

= Shifled Poisson + |73
~—— Shified Poizson + [j& |3
e Shified Poisson + TV
—— Shified Poisson + [Tyl
e Shifled Poisson JHLTV
Shified Poisson + [Tl
= == Weighted Least-Squares + |73
=== Weighted Laast-Squarss + || |3
- - - Weighted Laast-Squares + TV
- = = Waighted Least-Squares + | Ty .
- - - Waighted Laast Squares + NLTV
Wieighted Leact-Squarse + || Tp||.

PSNR (dB)

L e i AT T
10-2 10— 107 10! 102 10° 10 102 10t
Regularization parameter Regularization parameter

Figure 8. Evolution of the PSNR and the SSIM criterion as a function of the regularization
parameters for the test image A.

Table 2. Best PSNR (dB) / SSIM (%) performance for both test images.

%13 a3 ™ [Tl NLTV 1Tl
Shifted Poisson 213578253 2173/8296 22.79/8400 2358/8584 23.02/8295 24.28/8L.I8
Weighted Least-Squares  22.88/8420 22.83/8430 22.66/83.84 23.61/8594 20.94/8236 24.67/87.00

%12 llalz ™ [Tl NLTV T2l
Shifted Poisson 2670/8542 2686/85.80 27.99/87.59 2838/8808 27.86/8652 28.53/88.42

Weighted Least-Squares ~ 27.82/86.86  27.79/8697 27.68/87.81 2803/8851 27.12/8557 28.16/88.61

(extracted from Boulanger, Pustelnik, Condat, Piolot, Sengmanivong, Nonsmooth

convex optimization for Structured lllumination Microscopy image reconstruction, 2018.)
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Algorithmic strategy

Minimization problem

J
Find y € Argmin Z fi(y)
yYEH j=1
where (fj)1<j< belong to the class of convex functions, |.s.c., and proper
from H to | — 0o, +00]. H finite dimensional Hilbert space.

o Example 1: U € Argmin||Hu — z||3 + \||Ful|1 + t>0(u)

ueRl€l

o Example 2: @ € Argmin3||HF*a — z||3 + A|a[1
Q/ER‘T‘

o Example 3: U € Argmin ), —zyInoup + oun + A o [|(Fu)gll2
ueRl€ -
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Algorithmic strategy

Minimization problem

J
Find y € Argmin Z fi(y)
YEH j=1

e Properties of the involved functions

e smooth functions
— gradient-based methods (Newton, Quasi-Newton, ...)

e constraints
— projection based methods (POCS, SIRT, ...)

e non-smooth functions
— proximal algorithms (FB, DR, PPXA, ADMM, Primal-Dual,...)
— possible extension to infinite dimensional space.
— flexibility in the design of objective functions.
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Algorithmic strategy

Minimization problem

J
Find y € Argmin Z fi(y)

yEH j=1

700
600 ®
500
400 .

300
200 °

100 ®

[ ]
0 ............
2000 2005 2010 2015

Number of articles per year on Google scholar

containing “proximal algorithms” since 1997.
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Proximity operator

Gradient descent
Solve y € Argmin, f(y) when f € I'o(#) with a Lipschitz gradient 3 > 0.

Set v, €]0,2/8].
Set ylo € .
For k=0,1,...
|yt =yl — 4 (k)

The sequence (y!¥),en converges to .

22/41



Subdifferential of a convex function: properties

Let f: H — ]—00,400| be a proper function.
The (Moreau) subdifferential of f, denoted by Jf, is such that

of - H — 2%
x = {ueH|(Vy € H) (y — x|u) + f(x) < f(y)}

Auf(y) AU
F(x) +(y - x|u)

\J
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Subdifferential of a convex function: properties

Let f: H — ]—00,400| be a proper function.
The (Moreau) subdifferential of f, denoted by Of, is such that

Of - H — 2™
x> {ueH|(Vy eH) (y —x|u)+ f(x) < f(y)}

2 f(y) Ny
F(x) + (y - x| u)

X
k y 4
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Subdifferential of a convex function: properties

Let f: H — ]—00,400| be a proper function.
The (Moreau) subdifferential of f, denoted by Jf, is such that

of - H — 2%
x = {ueH|(Vy € H) (y — x|u) + f(x) < f(y)}

A f(y) AU
F(x) + - x| u)
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Subdifferential of a convex function: properties

Let f: H — ]—00,400| be a proper function.
The (Moreau) subdifferential of f, denoted by Jf, is such that

of - H — 2%
x = {ueH|(Vy € H) (y — x|u) + f(x) < f(y)}

2 f(y) N
760+ - x| )

\J
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Subdifferential of a convex function: properties

Let f: H — ]—00,400| be a proper function.
The (Moreau) subdifferential of f, denoted by Jf, is such that

of - H — 2%
x = {ueH|(Vy € H) (y — x|u) + f(x) < f(y)}

e Fermat rule:

0€9f(x) & (VyeH)(y—x|0)+f(x) < f(y)
< x € Argminf

o If f is differentiable at x, then 0f(x) = {Vf(x)}
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Proximity operator

Subgradient descent (Shor, 1979)
Solve ¥ € Argmin, f(y) when f € 'o(#) non-smooth.

For k=0,1,...
|yl = K el with K e afF(yIkD)

where Of (y) = {t e H|(Vu e H) f(u) > f(y)+ (t|u—y)}.
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Proximity operator

Subgradient descent (Shor, 1979)
Solve ¥ € Argmin, f(y) when f € 'o(#) non-smooth.

For k=0,1,...
|yl = K el with K e afF(yIkD)

where Of(y) ={t e H|(VueH) f(u) > f(y)+ (t|lu—y)}.
Technical assumptions on -y, to insure convergence:
= decreasing step-size.
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Proximity operator

Proximal point algorithm
Solve y € Argmin, f(y) when f € ['o(#) non-smooth

Set 4 > 0 such that "7%0 72 = cc.
Set ylo € .
For k=0,1,...
|yt = Ik — K with  tlK] e af(ylkttl)

where Of(y) ={t e H|(VueH) f(u) > f(y)+(t|lu—y)}.
The sequence (y!¥),cn converges to y.
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Proximity operator

Proximal point algorithm
Solve y € Argmin, f(y) when f € ['o(#) non-smooth

Set 4 > 0 such that "7%0 72 = cc.
Set ylo € .
For k=0,1,...
L y[k+1] — y[k] — ’}/kt[k] with t[k] c 8f(y[k+1])

where Of(y) ={t e H|(VueH) f(u) > f(y)+(t|lu—y)}.
The sequence (y[¥),cn converges to y. = no decreasing step-size.

= (Vk S N) y[k] - y[n+1] S w@f(y[kﬂl)
o (ke = [proe (M)
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

= inf Zlu=v|?
(VYueH) proxu = arg min (v)+2Hu v||
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

= inf Zlu=v|?
(VYueH) proxu = arg min (v)+2Hu v||

Examples closed form expression
® proxy.,: soft-thresholding with a fixed threshold A >0

= |dentity
—Soft-thresholding
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

— R = _yl?
(VYueH) proX,u = arg min f(v)+ 5 lu—v]

Examples closed form expression

® proxy.,: soft-thresholding with a fixed threshold A >0

° proxll,Hm(Peyré,FadiIi,2011).

° prOX”Hg with p = {%, %, 2,3, 4}(Chaux,Combettes,Pesquet,Wajs,2005).
proxp,, (Combettes,Pesquet,2007).
prox,. = P¢ projection onto the convex set C.
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

— R = _yl?
(VYueH) proX,u = arg min f(v)+ 5 lu—v]

Examples closed form expression
® proxy.,: soft-thresholding with a fixed threshold A >0
® Drox., ,(Peyré Fadili2011).

° prOX”Hg with p = {%, %, 2,3, 4}(Chaux,Combettes,Pesquet,Wajs,ZOOS).
® proxp,, (Combettes,Pesquet,2007).
e prox,. = P¢ projection onto the convex set C.
— range constraint hypercube projection,
— glyp-ball constraint  (Quattoni,Carreras,Collins,Darrell,2007) (Van Den

Berg, Friedlander,2008)
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

— R = _yl?
(VYueH) proX,u = arg min f(v)+ 5 lu—v]

Examples closed form expression
® proxy.,: soft-thresholding with a fixed threshold A >0
® Drox., ,(Peyré Fadili2011).

° prOX”Hg with p = {%, %, 2,3, 4}(Chaux,Combettes,Pesquet,Wajs,ZOOS).
proxp,, (Combettes,Pesquet,2007).
prox,. = P¢ projection onto the convex set C.

— range constraint hypercube projection,

— glyp-ball constraint  (Quattoni,Carreras,Collins,Darrell,2007) (Van Den

Berg, Friedlander,2008)
® PIOXy> with overlapping groups (Jenatton,Mairal,Obozinski,Bach, 2011)
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

— R = _yl?
(VYueH) proX,u = arg min f(v)+ 5 lu—v]

Examples closed form expression
® proxy.,: soft-thresholding with a fixed threshold A >0
° proxll,Hl2(Peyré,Fadi|i,2011).

° prOX”Hg with p = {%, %, 2,3, 4}(Chaux,Combettes,Pesquet,Wajs,ZOOS).
proxp,, (Combettes,Pesquet,2007).
prox,. = P¢ projection onto the convex set C.

— range constraint hypercube projection,

— glyp-ball constraint  (Quattoni,Carreras,Collins,Darrell,2007) (Van Den

Berg, Friedlander,2008)
® PIOXy> with overlapping groups (Jenatton,Mairal,Obozinski,Bach, 2011)

e Composition with a linear operator: prox,,; closed form if LL* = v1d
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Proximity operator

Definition (Moreau,1965) Let f € [o(H) where H denotes a real Hilbert space. The
proximity operator of f at point u € H is the unique point denoted by prox,u such that

— R = _yl?
(VYueH) proX,u = arg min f(v)+ 5 lu—v]

Examples Proximity operator of a sum of two functions :

ProXy, ,f, = ProXs1 © proxsn?

(Combettes-Pesquet, 2007) N =1, f, = ¢c of a non-empty closed
convex subset of C and f; is dierentiable at 0 with A’(0) = 0.
(Chaux-Pesquet-Pustelnik,2009) C and f, are separable in the same
basis.

(Yu, 2013)(Shi et al., 2017) 9f(x) C df(proxfi(x)).

Many recent results (Pustelnik, Condat, 2017)(Yukawa, Kagami,
2017)(del Aguila Pla, Jaldén, 2017)
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Proximal algorithm: Forward-backward

Forward-backward algorithm
Solve y € Argmin, fi(y) + f2(y) with f; and £ in ['o(H)
Let y[O € .
For k=0,1,...
\_ y[k+1] — y[k] + Tk( prOX’kal (y[k] — ’Yk sz (y[k])) — y[k])
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Proximal algorithm: Forward-backward

Forward-backward algorithm
Solve y € Argmin, fi(y) + f2(y) with f; and £ in ['o(H)
Let y[O € .
For k=0,1,...
\_ y[k+1] — y[k] _|_ Tk( prOX’kal (y[k] — 'Yk Vf2 (y[k])) — y[k])

Convergence (Combettes,\Wajs,2005)
e f5 is B-Lipschitz differentiable on H with 3 > 0
e 7 €]0,2/4] : algorithm step-size

e 7, €]0,1] : relaxation parameter

Under these assumptions, (y[k])keN converges to y.
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Example: Structured illumination microscopy

Wide-field Classical Proposed

41 um

*J. Boulanger, N. Pustelnik, L. Condat, T. Piolot, L. Sengmanivong, Nonsmooth convex
optimization for Structured lllumination Microscopy image reconstruction, Inverse

problems, vol. 34, no. 9, 22pp., July 2018.
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Example: Multiphasic flow

*Collaboration LPENSL.
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Example: Matrix completion

minimizel||x|[, s.t. Hx =z
X

€o @2 €0 @ B0

-
e

500000 - 20000
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Example: Robust PCA

minimize||u||. + ||v]1 st. z=u+v
u,v

)

[From Goldfarb, Ma, Sheinberg, 2010]
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Learning

Classification

Training set

Images to classify

AN A OIS oW o
QArdNITOW Y s
ONN TN A
QM TON N
ONNOTNY oo~
QN Y R0 oo O
V-—ad T LS ~>x o
Q=AM oo~
O~T RGN AN
O —oAMILON Nod N\

QN ™ R0 oo O
V-—AdNTF LS ~x o
Q=dAdM3xLI oo~

e Training set of size L for K classes:

L}

LKy eeds,..

{(Ug,Zg) S RN X {1, ..

S —

o (@)}

[

NN
o

2 c

o @

- | 0D

[

5 3

"

Q£

o

1S

Q]

X

(]
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Learning: multiclass SVM

o ¢(u): RV — RM: mapping from the input space onto an arbitrary
feature space with M > N
= linearization
examples: convolution networks [Mirowski et al., 2008]

scattering coefficients [Brunat,Mallat,2013]

e The predictor relies on K different discriminating functions
Dy: RN 5 R :
Di(u) = ¢(u)Tx*k) 4 pk)
e The predictor selects the class that best matches an observation

d(u) = arg_max D (u)
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Learning: multiclass SVM

Objective of the learning stage: estimate x to correctly predict the
input-output pair (ug, z) € S for every ¢ € {1,...,L},

7y = arg max p(up) " x(¥)
1<k<K

o maxo(u) T (x0) —x(®) <0
k#zy

[relax the strict ineqality with u, > 0]<> km;x QD(UK)T(X(k) — X(ZZ)) < — g
Zy

[deal with unfeasible constraints ¢(*) > 0]<> T;X QO(UK)T(X(k) — X(Ze)) < C(Z) — g
z

minimize Z [xk)||3 + )\Zﬁ subj. to

(x,6)ERM+DK x RL

(Vﬁ e{1,...,L}) T;;Z @(Ug)T(X(k) _ X(Ze)) < g(f) — g

(Vee{l,.,L}) ¢9>o,
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Sparsity in learning

minimize Z x|y + )\Zf subj. to

(X E)E]R (M+1)K xRL

(Ve S {1, ceey }) Ln;;; @(U[)T(X(k) _ X(Zg)) < g(g) — g

(Vee{l,..,L}) ¢9>o,

e cf. work by F. Bach and reference therein.

e Possibility to learn quadratic interactions.

35/41



36/41

Image reconstruction with CNN
Inverse problems : Tikhonov penalization
X € Argmin||Hx — z||? + \||Tx]|3
xERN
& X=(HH+ M) Hz = Gz
Reformulation into a convolutional network using the kernel
separability theorem relying on the existence of the decomposition

G=USV":
x=) 5Uie(Via2).
J

where s; denotes the j-th singular value, and U; 4 (resp. V; o) denotes
the j-th column of U (resp. V).

2D deconvolution can be reformulated as a weighted sum of separable
1D filters.

X can be well approximated by a small number of separable filters by
dropping out kernel associated with very small s;.



Image reconstruction with CNN: agnostic

¢ Image Deconvolution Convolutional Neural Networks (DCNN) [Xu et
al, 2014] :
X ="f(z)
= Wao(Woo(Wiz + by) + by.

e W3 denotes weights playing the same role than S,
o W, and W;: separable kernels acting horizontally or vertically,
e ¢ denotes a nonlinear function.

e Goal: estimate (W;)j=123 and (b;)j=12 in order to minimize
1
—_— f — Xyl
3N Z [1£(ze) — ||
ieN
using training image pairs {X¢, z¢ }re -
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Image reconstruction combining CNN and regularization
techniques

Neumann Networks for
Linear Inverse Problems in Imaging

Davis Gilton, Greg Ongie, Rebecca Willett*

June 5,2019

Abstract

Many challenging image processing tasks can be described by an ill-posed linear inverse
problem: deblurring, deconvolution, inpainting, compressed sensing, and superresolution all
lie in this framework. Traditional inverse problem solvers minimize a cost function consisting
of a data-fit term, which measures how well an image matches the observations, and a reg-
ularizer, which reflects prior knowledge and promotes images with desirable properties like
smoothness. Recent advances in machine learning and image processing have illustrated that
it is often possible to learn a regularizer from training data that can outperform more tradi-
tional regularizers. We present an end-to-end, data-driven method of solving inverse problems
inspired by the Neumann series, which we call a Neumann network. Rather than unroll an
iterative optimization algorithm, we truncate a Neumann series which directly solves the lin-
ear inverse problem with a data-driven nonlinear regularizer. The Neumann network archi-
tecture outperforms traditional inverse problem solution methods, model-free deep learning
approaches, and state-of-the-art unrolled iterative methods on standard datasets. Finally, when
the images belong to a union of subspaces and under appropriate assumptions on the forward
model, we prove there exists a Neumann network configuration that well-approximates the
optimal oracle estimator for the inverse problem and demonstrate empirically that the trained
Neumann network has the form predicted by theory.
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Image reconstruction combining CNN and regularization
techniques

e Inverse problems : Tikhonov penalization
X € Argmin||Hx — z||> + x'Rx & x = (H*"H + R)'H*z
xERN

e Applying Neumann series expansion
+ truncating the series
4+ R= Rb:
J

K(z,0) = (I = nH*H — nRsYnH*z
j=0

e Training from the dataset (X, z) € S
L
. ~ ’0 =12
mgln; [1x(2¢,0) — Xell3
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Image reconstruction combining CNN and regularization
techniques

LEARNING THE INVISIBLE: A HYBRID DEEP LEARNING-SHEARLET
FRAMEWORK FOR LIMITED ANGLE COMPUTED TOMOGRAPHY

TATIANA A. BUBBA, GITTA KUTYNIOK, MATTI LASSAS, MAXIMILIAN MARZ, WOJCIECH SAMEK,
SAMULI SILTANEN, AND VIGNESH SRINIVASAN

ABSTRACT. The high complexity of various inverse problems poses a significant challenge to model-
based reconstruction schemes, which in such situations often reach their limits. At the same time, we
witness an exceptional success of data-based methodologies such as deep learning. However, in the
context of inverse problems, deep neural networks mostly act as black box routines, used for instance
for a somewhat unspecified removal of artifacts in classical image reconstructions. In this paper, we will
focus on the severely ill-posed inverse problem of limited angle computed tomography, in which entire
boundary sections are not captured in the measurements. We will develop a hybrid reconstruction
framework that fuses model-based sparse regularization with data-driven deep learning. Our method
is reliable in the sense that we only learn the part that can provably not be handled by model-based
methods, while applying the theoretically controllable sparse regularization technique to the remaining
parts. Such a decomposition into visible and invisible segments is achieved by means of the shearlet
transform that allows to resolve wavefront sets in the phase space. Furthermore, this split enables us
to assign the clear task of inferring unknown shearlet coefficients to the neural network and thereby
offering an interpretation of its performance in the context of limited angle computed tomography.
Our numerical experiments show that our algorithm significantly surpasses both pure model- and more
data-based reconstruction methods.

[cs.CV] 12 Nov 2018
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Image reconstruction combining CNN and regularization
techniques

e Sparse regularization:

X € Argmin||Hx — z||2 4+ A||Fx]||1
xERN

e Train CNN to estimate the “ invisible” from the visible:

w = NNy(FX)
e Combine the visible and the learned invisible coefficients:

x = F*((FX)yis + winy)
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Image reconstruction combining CNN and regularization

techniques
Method RE | PSNR | SSIM | HaarPSI
Free 084 | 17.16 | 0.12 0.18
f- 0.22 | 28.76 | 0.94 0.47
fv 0.21 | 29.54 | 0.95 0.54

NNo(Ffese) | 0.19 | 3020 | 054 | 0.75
NNo(SH(fz)) | 0.18 | 3052 | 0.78 | 0.72

Fres 0.09 36.96 | 0.96 | ~ 0.86
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Stability

On instabilities of deep learning in image reconstruction - Does
Al come at a cost?

Vegard Antun! Francesco Renna? Clarice Poon? Ben Adcock? Anders C. Hansen*>!

Deep learning, due to its unprecedented success in tasks such as image classification, has emerged as a new tool
in image reconstruction with potential to change the field. In this paper we d -ate a crucial pk

deep learning typically yields unstable methods for image reconstruction. The instabilities usually occur in sev-
eral forms: (1) tiny, almost undetectable perturbations, both in the image and sampling domain, may result in
severe artefacts in the reconstruction, (2) a small structural change, for example a tumour, may not be captured
in the reconstructed image and (3) (a counterintuitive type of instability) more samples may yield poorer per-
formance. Our new stability test with algorithms and easy to use software detects the instability phenomena.
The test is aimed at researchers to test their networks for instabilities and for government agencies, such as the
Food and Drug Administration (FDA), to secure safe use of deep learning methods.




Stability

e tiny perturbation: incorrect representation.

Original || |z +71] | + 73] | + 73] SoA from Az
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Stability

e small structural changes: stable.

Original x4 + 1y Original w4 + 74 (zoomed) Deep MRI fy(Agxq + 74) SoA from Ay(zy + ry)
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Conclusions and perspectives

Deep learning allows us to obtain very good results for denoising task
but general inverse problem still not solved.

From regularized methods to deep learning: model design +
optimization.

Design an objective function compatible with algorithmic strategies.

Stronger guarantees in the non-convex setting (Mumford-Shah, deep
learning).
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