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olI](x) = N(x,0) . (h =1 )(x)
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Fig. 2.
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SSIM(x,y) =
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Comparison of "Boat” images with different types of distortions, all with MSE = 21{. (a) Original image (8bits/pixel: cropped

from 512x512 to 256x 256 for visibility); (b} Contrast stretched image, MSSIM = (1.9168; (c) Mean-shifted image, MSSIM = (0.9900:; (d)
JPEG compressed image, MSSIM = (.6949: (e) Blurred image, MSSIM = (.7052; (f} Salt-pepper impulsive noise contaminated image,
MSSIM = (.7748.
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Let us consider the question of model assessment
jointly with modeling
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Discriminator Network
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* 1000 images extracted from VOC2012 database
resized to 256x256 and error diffusion halftoned
* 650 images for training, 100 for validation and 250 for testing

e GAN architecture derived from SRGAN
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* A physical model and a generative adversarial methodology for
testing it have been suggested

* The obtained hierarchy between the model and its approximations
looks good

* The closest instance remains beyond the generative image model650
images: a Panda effect?

e Other metrics as EMD could be tested.
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Thank you for your attention!
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