Prediction of appearance of materials

The radiometric approach

French research group whose vocation is to organize and develop the scientific community around the appearance of materials

- Axe 1 Materials and fabrication
- Axe 2 Physical and sensory measurements
- Axe 3 Modeling and simulation
- Axe 4 Scanning and description
- Axe 5 Digital reproduction and rendering

http://gdr-appamat.cnrs.fr

http://gdr-appamat.cnrs.fr

Shape, Texture, Translucency, Gloss, Color are attributes of appearance

From material to appearance

Appearance attributes Radiometry Electromagnetism

Appearance

Color, gloss, translucency

Radiometric response

Spectral, angular and spatial distribution of reflected and transmitted light in the visible range

Intrinsic optical properties of the components Complex refractive index

The **polarization direction** is the direction of the electric field **E** (perpendicular to the direction of propagation).

Complex refractive index

Complex refractive index

Ρ

0

(+)

The polarization vector **P** corresponds to a dipole moment per unit volume

Linearity assumption

 $\mathbf{P} = (\varepsilon - \varepsilon_0) \mathbf{E}$

 ϵ : dielectric permittivity

In optics, we prefer to use the **complex refractive index**

3

 ϵ_{c}

Refractive index

Extinction coefficient

Complex refractive index

Complex refractive indices can be measured by ellipsometry or are tabulated

Ag

From material to appearance

Elementary light-matter interactions

Coating (paint, ink...) of a material

Elementary light-matter interactions

Elementary light-matter interactions

Binder

A question of scale, concentration and organization

<<λ : nanometric scale Homogeneous effective medium

~λ : hundreds of nanometersDiffractive and interferential effects

A a b c d e f g h i j k

Ag nanoparticles (80 nm) in solution

Opale Arrangement of SiO_2 spheres (300 nm)

>λ : micrometric scaleOptic geometric approach

Retroreflective coating Microbeads (80 μ m) of SiO₂

A question of scale, concentration and organization

Enamels with metallic glaze

J. Lafait et al., Comptes Rendus Physique (2009)

Locally \rightarrow multilayer approach

From material to appearance

From radiometry to appearance

The spectral, angular and spatial variations of the scattered light

can be linked to the attributes of appearance

- \rightarrow Psycho-visual experiments
- \rightarrow Standardization by CIE for diffuse colors
- \rightarrow Much remains to be done for others appearance attributes

From radiometry to appearance

The spectral, angular and spatial variations of the scattered light

can be linked to the attributes of appearance

From radiometry to appearance

BSSRDF

Radiometric response

Spectral, angular and spatial distribution of reflected and transmitted light in the visible range

Direct problem

The more you want a complete description of the radiometric response, the more you need to know the material accurately

 \rightarrow a lot of strategies to simulate an average response

Parameters describing the object

Complex refractive indices of each component

Size, shape, concentration and organisation of the heterogeneities (surface and volume)

Radiometric response

Spectral, angular and spatial distribution of reflected and transmitted light in the visible range

Inverse problem

 \rightarrow Identify components

 \rightarrow Quantify their concentrations, sizes, shapes

Parameters describing the object

Complex refractive indices of each component

Size, shape, concentration and organisation of the heterogeneities (surface and volume)

Example 1: interreflections in a cavity

James Turrell, Afrum I (White), Guggenhaim collection (1967)

Example 1: interreflections in a cavity

Variation of the perceived radiance

depending on whether the illumination light is collimated or diffuse

Interreflections in a diffuse V-cavity

Assumptions and parameters

Infinitely long V-cavity Lambertian material of reflectance ρ Aperture angle of the cavity α

Frontal illumination

Diffuse illumination

Example 2: halo in a transparent coating

Photograph on glass plate of the Milky Way (in negative). E.E. Barnard, about 1892-1895 © Lick observatory

Lambertian backgroung (ρ)

d

Global radiometric response Assumptions and parameters Interface n Transparent coating

Halo in a transparent coating on a diffuse substrate

4 mm thick glass plate in optical contact with a paper, illuminated with a red laser diode © Morgane Gerardin

L. Simonot et al., JOSA A (2018)

Some issues

Limitations related to radiometric measurement possibilities

- There are no standardized measurements of BSSRDF

- BRDF measurements have low signal-to-noise ratios especially at grazing angles and often poor angular resolution

- Even for spectral measurements, it is difficult to measure reflectances of translucent materials.

 \rightarrow Need to collaborate with metrologists

D.R. White et al., Applied Optics (1998)

Some issues

Error estimation between simulations and measurements

- rms error doesn't represent the difference in perception $\rightarrow \Delta E$ in colorimetry
- Which error for BRDF? Which weight for the diffuse part and for the specular lobe?
- Sparse measured data: interpolation/extrapolation errors

Know, measure or estimate the parameters describing the materials

How to measure complex refractive indices for non-flat (rough surface, powder) or non-opaque materials?

Know, measure or estimate the parameters describing the materials

Measurement of surface topography: which spatial frequency range has an impact on the radiometric response?

Coherence scanning interferometer (CSI) Confocal microscope (CM) Atomic force microscope (AFM) 30

O. Flys et al., Surface Topography: Metrology and Properties (2015)

Some issues

Know, measure or estimate the parameters describing the materials

How to have a correct evaluation of the size, shape and organisation of the particles?

Cross-sections of several shades in the St Stephen wall paintings S. Daniila, Journal of Archaeological Science (2008)

Radiometric approach is possible for ideal situations and a small number of parameters

Combined approach (radiometry and machine learning) could be efficient for more complex systems

Appearance prediction models should be adapted to measurements facilities