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Goal for resolution improvement using

micro-scanning
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» Traditional digital super-resolution ax

using dither achieves around 2.5X

« Coding can dramatically increase
super-resolution gain

— Our goal is to achieve 8X (1:64)
Increase In resolution

« Demonstrate super-resolution using
simple implementation of codes
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Image Coding and Sensing Concept
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The image formed at the mask is coded at the desired
higher resolution, and re-imaged with demagnification
on a low resolution FPA
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The FPA captures a coded frame of data as the mask
steps across the scene on a x-y scanning stage.

The re-imager maps a group of mask elements
onto a single detector. As the mask moves, the pattern
of open and closed elements changes.

» Motivated by the published works of other teams that have already demonstrated sliding mask

strategies for computational imaging

— Llull et. al “Coded aperture compressive temporal imaging”




Relation between Mask features and FPA

Size of mask elements is
matched to image resolution

The goal is to collect light from a group
100um of Mask features onto a single detector
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ﬁ Example of 4X coding on mask

Scanner moves in increments of 5 microns in “x” direction.

The relay imager provides 1:4 demagnification from the Mask to the FPA
* al100um x 100pum area on the mask is imaged onto 25um X 25 pum area on the FPA

A 4X resolution improvement is achieved by using 25pum x 25um mask elements
A 10X ratio is achieved by using 10pm X 10um mask elements



Laboratory Set up for 8X reconstruction

Objective Blur Spot (25 microns)
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Relay Blur Spot (25 microns)
* A high resolution camera was used to capture images of the mask as viewed through the re-imager

— Eliminated registration issues.

* Towards this end, the 25 micron SWIR camera was replaced with 2.2 micron visible band camera
— The lenses were not changed. Spectral filters and apertures stops were used to ensure optical resolution.
— 10 micron blur spot at the mask is matched by 10 micron mask features

— Re-imager with 4X demagnification maps each mask feature to 2.5 micron on the FPA. This can be resolved using the 2.2 micron
pixels.



Images of Masks as viewed through the re-imager.
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* The high-resolution (1:10) mask has 10x10 micron elements that are resolved as 1x1-pixel features
— This mask encodes the image at the native resolution of the FPA

* The Low-resolution (1:4) mask has 25x25 micron elements that are resolved as 3x3-pixel features



Mask Registration

(b) (c)

* Itis critical for the ideal mask pattern to be registered to the mask as implemented
in the system.

 The ideal mask pattern is shown in (a) and its image as observed through the
reimager is shown (b). The result of transforming the ideal pattern so that it
matches the observed image is shown in (c), and is used as the function ¢, (m, n) for
image reconstruction.



Reconstruction algorithm — Gradient Descent
Computationally simple but iterative approach
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 In 2015, we described an adaptive (gradient descent) reconstruction algorithm.
— lteratively learns the least mean square (LMS) error solution with each measurement
— Treats entire scene as a continuous function
— Numerically very straightforward and easy to implement

* In 2016, we also explored a closed form “least squares” estimator for block-wise reconstruction of the
Image.
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Reconstruction Algorithm — Blockwise Least Squares
(Computationally Expensive but closed form)
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« Assume that the FPA has P X Q elements
* The mask and the scene are divided into P X Q blocks, each of size MxN
- The output at the detector element in row p, column q is given by y(k) = X% _ . ¥N_. a(m,n, k)x(m,n)
— This can be written in vector notation as y(k) = aj,x,
- al and x are obtained by lexicographically reordering a(m,n, k) and x(m,n)
« A series of measured values y = [y(1) y(2) .. y(N)]T are obtained as the mask moves.
— Defining A =[a1 az .. ag| the measurementis given by y = Ax
« To reconstruct a block of the image, we minimize |y — Ax|*> + 8|x|*  (Tikonov Regularization)

- The solution is given by x = (ATA + 61)_1ATy
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Photon Constraint

e Consider the L1 norm of the columns of the measurement matrix:

(V1 A11 Q12 o AINM]T X1
Y2| |@21 Q22 - AzNm || X2
VK | g1 QAg1 " Agnm] LXNM.

* The constraint max{zlgzl‘ak,j‘, j=1 NM} = 1 ensures that the
matrix A represents measurements made with finite resources.

* An example of the effect of the photon constraint on
reconstruction results will be shown later.



Condition Number Depends on Feature size and Shifts

.8 Condltlon Numbers for Periodic Mask with 25 micron features 18 Condition Numbers for Random Mask with 10 micron features
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Mask with 25 micron Features for 4X reconstruction Mask with 10 micron Features for 8X reconstruction
The scanner allows the mask to be moved in steps of 5 microns between measurements

The random mask with 10 micron features produces measurement matrices with smaller condition number, than the
periodic mask with 25 micron features.
The condition number is also smaller for a block size of 4x4,

The mask with 25 micron features should shift by 5 steps between measurements, while 3 steps between measurements is sufficient for

the mask with 10 micron features. H



Scene at Low and High Resolution
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* FPA data is digitally binned (in groups of 8x8 pixels) to obtain low resolution images
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Video of low resolution data captured with 4X and 10X Masks
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Comparison of Reconstruction Results (blockwise least squares)
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4X Reconstruction using data encoded  8X Reconstruction using data encoded
with 25 micron features (1:4 encoding)  with 10 micron features (1:10 encoding)

Average of data frames
Upsampled with bilinear interpolation

e The 8X has the best resolution

 The 4X reconstruction is better than the upsampled images, but not as good as the results obtained with 1:10
encoding
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Details in 8X reconstruction

Low resolution
FPA frame

128 x 119

after 8x8 binning

8X reconstruction
1024 x 952




Comparison of Gradient Descent and Blockwise LSQ

Iterative Gradient  g— Blockwise Least
Descent | : Squares
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* The results obtained with the iterative least mean square (LMS) gradient descent algorithm (on the left) is
somewhat more blurry than that obtained with the blockwise least squares algorithm (on the right).




Comparison of restored PSFs
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— Narrower the blur, the better is the resolution of the reconstructed image.

bilinear interpolation

The resolutions of the ideal and reconstructed images can be compared in terms of a “blur”

horizontal index

The 8X reconstruction has the narrowest blur. The 4X reconstruction comparatively broader (as expected), but still narrower than




Comparison of low and high resolution images using SSIM
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* An outdoor scene (a) as captured at low resolution by the FPA with an SSIM measure of 0.34,
and (b) the ideal high resolution version showing the details to be reconstructed.
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SSIM using Random Mask and blockwise Reconstruction

* The image in (a) is an example of

The result in (b) was obtained by
tiling together 32 x 32 image
blocks that were reconstructed
using the corresponding 4x4 block
of encoded data. The SSIM
measure between this image and
the ideal version is 0.94. Some
details of the images in (a) and (b)
are shown in (c) and (d)
respectively.
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data coded with the random mask.
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Similarity Measure using Periodic Mask
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* The results obtained with periodic mask has four-fold greater resolution
than the original data (SSIM=0.66), but is comparatively blurry and noisy

due to the poorly conditioned measurement matrix.
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SSIM using Gradient Descent with Random Mask

Iterative Gradient
Descent

e Results obtained with gradient
descent algorithm exhibit
improved resolution
(SSIM=0.86), but details are
somewhat blurry compared to
results obtained with blockwise
reconstruction.
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Summary

We have experimentally verified that high resolution images can be obtained
using considerably smaller FPAs

— This is a trade off between space bandwidth and time

Coding with moving mask allows improvement in resolution by 8X in each
dimension (1:64 increase in pixels)

— This implies that a 1K x 1K FPA can be used to create 8K x 8K images
— We showed that there is an optimum number of shifts between measurements
— Results illustrate the importance of incorporating photon constraints

— Two different reconstruction algorithms were used (iterative gradient descent and
blockwise reconstruction)

Comparison of recovered MTFs show that 10micron mask doubles
the resolution obtained using 25 micron mask

Comparison of SSIM values show that blockwise reconstruction
using least squares is better than iterative gradient descent



