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Asplund's Metrics Useful for Images Acquired 

under Variable Lighting

 Images acquired under unstable lighting conditions are very 

difficult to process

 For example, such a situation occurs for video-surveillance

images of streets, highways, military or industrial sensitive

sites, aerial or submarine images …

and also :      

 Images acquired “in transmission” (observed object between 

the source and the sensor) : microscopy, tomography, 

radiography, scanner…, in which the opacity and the thickness 

of the object may be variable.



Asplund's Metrics Useful for Images Acquired 
under Variable Lighting

 In order to overcome the drawbacks generated by a variable 
lighting, we propose to develop our image processing
algorithms inside the

LIP (Logarithmic Image Processing) framework

 We will see that such a framework permits to develop tools and 
algorithms presenting a lot of significant advantages compared
to the « classical » ones

Ref: M. Jourlin (2016), « Logarithmic Image Processing : Theory and Applications », 
Advances in Imaging and Electron Physics, Vol 195, Academic Press, 259 p.



Asplund's Metrics Useful for Images 
Acquired under Variable Lighting

 The most significant properties of the LIP Model:
– It is based on the « Transmittance Law », which gives it

a strong physical justification

– The laws defined inside the Model (addition of two
images and homothety of an image) possess strong
mathematical properties due to the fact they give a 
Vector Space structure to the space of  images

– Moreover, Brailean (°) has established that the Model 
is consistent with the Human Visual System

(°) J. Brailean, B. Sullivan, C. Chen, M. Giger, (1991), “Evaluating the em
algorithm using a human visual fidelity criterion”, Int. Conf. on Acoustics. Speech 
and Signal Processing, 2957–2960



Recalls on the LIP Model

Notations: A grey level image is a function defined on the spatial 
domain 𝐷 with values in the grey scale [0, 𝑀[:

𝑓: 𝐷  ℝ2 → [0, 𝑀[⊂ ℝ

 Definition of the Logarithmic Addition Law 

The addition 𝑓 ⨹ 𝑔 of two images 𝑓 and 𝑔 is interpretable (for 
images acquired in transmission) as the superimposition of the 
obstacles (objects) generating respectively 𝑓 and 𝑔. 

S S S
Source Sensor

𝑓 𝑔 𝑓 ⨹ 𝑔



Recalls on the LIP Model

 Definition of the Logarithmic Addition Law 
– It has been established that

𝑓 ⨹ 𝑔 = 𝑓 + 𝑔 −
𝑓.𝑔

𝑀
(1)

Remark : the opposite of 𝑓 and the subtraction of 𝑓 and 𝑔 have also 
been defined according to the formulas:

⨺ 𝑓 =
−𝑓

1−
𝑓

𝑀

and 𝑓 ⨺ 𝑔 =
𝑓−𝑔

1−
𝑔

𝑀

(2)

Warning : within the LIP model, 0 corresponds to the “white” extremity 
of the grey scale, which means to the source intensity, i.e. when no 
obstacle (object) is placed between the source and the sensor.

The other extremity M is a limit situation where no element of the source 
is transmitted (black value). For 8-bits images, 𝑀 = 28 = 256



Recalls on the LIP Model

Variation of the source intensity

M 

An image 𝑓 represented in the scale [0, 𝑀[

becomes 𝑓 ⨹ 𝐶 in the scale [𝐶, 𝑀[, which

corresponds to an attenuation of 𝑓 𝐶

Intensity of the source  0

⇒ on the opposite,

0 appears as a « negative » grey level related to [𝐶, 𝑀[ and

negative grey levels appear as light intensifiers



Recalls on the LIP Model

 Definition of the Logarithmic Scalar Multiplication 
– For every 𝜆 ∊ ℝ

𝜆 ⨻ 𝑓 = 𝑀 − 𝑀(1 −
𝑓

𝑀
)𝜆 (3)

Remark: such a multiplication consists of stacking 𝒇 upon itself 𝝀
times ⇨ the resulting image is darker (resp. brighter) than 𝑓 when

𝜆 > 1 (resp. 𝜆 <1) and obviously unchanged when 𝜆 = 1

To conclude these recalls, the two laws ⨹ 𝑎𝑛𝑑 ⨻ equip the space of 
grey level functions with a Vector Space structure, which gives access
to a countless set of tools and concepts available in this kind of spaces
(for example the logarithmic interpolation between two images or the 
scalar product of two images, which represents in fact a correlation
coefficient between them).



What can we expect from the LIP framework ?

 We can define new notions of contrast, physically founded
and interpretable:
– The Logarithmic Additive Contrast between two points 𝑥, 𝑦 :

𝐶 𝑥,𝑦
⨹ 𝑓 = 𝑀𝑎𝑥 𝑓 𝑥 , 𝑓 𝑦 ⨺ 𝑀𝑖𝑛 𝑓 𝑥 , 𝑓 𝑦 (4)

Such a contrast represents the grey level we must add to the brightest 
pixel (𝑀𝑖𝑛 𝑓 𝑥 , 𝑓 𝑦 to get the darkest one (𝑀𝑎𝑥 𝑓 𝑥 , 𝑓 𝑦 .

Using the subtraction formula (2) yields to the explicit expression:

𝐶 𝑥,𝑦
⨹ 𝑓 =

|𝑓 𝑥 −𝑓(𝑦)|

1−
𝑀𝑖𝑛(𝑓 𝑥 ,𝑓 𝑦 )

𝑀

(5)



What can we expect from the LIP framework ?

Contour detection:

We can compute the LIP contrast between a pixel x and each of its 8 
neighbors and affect to x the maximal one:

Initial image Contour detection Contour detection
of a well (classical Sobel) (LIP contrast)



What can we expect from the LIP framework ?

Image enhancement: when we subtract (resp. add) a constant (i.e. a 
grey level) to an image in the LIP sense, we brighten (resp. darken) it



What can we expect from the LIP framework ?

Image stabilization (may be done at camera speed of 25 im./s)

a)

b)

c)

a) Variable lighting
b) Stabilized images
c) Corresponding histograms



What can we expect from the LIP framework ?

Exposure time simulation (LIP addition/subtraction of a constant)

a) b) c)

a) Image f: “Laboratory” acquired with exposure time = 10ms 
b) Image g: “Laboratory” acquired with exposure time = 100ms  
c) Starting from a), simulation of an exposure time of 100ms



What can we expect from the LIP framework ?

Exposure time simulation

a) b) c)                             d)

a) Label acquired at 30ms (motionless wheel) 
b) Label acquired at 30ms (wheel rotating at 6.4 revolutions per second)
c) Rotating label acquired at 1ms 
d) Simulation of an exposure time of 30ms starting from image c)



What can we expect from the LIP framework ?

Texture evaluation independently of the lighting

a) b) c)

a) Initial image
b) LIP additive maximal contrast applied to a) 
c) Sobel operator applied to a)



What can we expect from the LIP framework ?

Defining novel metrics (distances between images)
Let us recall formula (4):

𝐶 𝑥,𝑦
⨹ 𝑓 = 𝑀𝑎𝑥 𝑓 𝑥 , 𝑓 𝑦 ⨺ 𝑀𝑖𝑛 𝑓 𝑥 , 𝑓 𝑦

defining the Logarithmic Additive Contrast between two points 𝑥
and 𝑦 of an image 𝑓

In the same way, we can compute the Logarithmic Additive Contrast
between two images 𝑓 and 𝑔 at the same point 𝑥 according to: 

𝐶 𝑥
⨹ 𝑓, 𝑔 = 𝑀𝑎𝑥 𝑓 𝑥 , 𝑔 𝑥 ⨺ 𝑀𝑖𝑛 𝑓 𝑥 , 𝑔 𝑥 (6)

This is the first step for defining a novel distance between 𝑓 and 𝑔



What can we expect from the LIP framework ?

Defining novel metrics (distances between images)
M

𝑓
𝐶 𝑥

⨹ 𝑓, 𝑔

𝑔

0        𝑥
In fact, we can get a Logarithmic distance between 𝑓 and 𝑔 on a ROI 

by computing the average value or the maximal value of 𝐶 𝑥
⨹ 𝑓, 𝑔

when 𝑥 varies in the ROI.



What can we expect from the LIP framework ?

Defining novel metrics (distances between images)
Another approach consists of starting from a  little known metric
defined on binary shapes: the Asplund’s metric

A and B being two binary shapes, Asplund proposed to perform a 
double probing of one shape (A for example) by the other:

We compute the smallest number 𝜆0 such that 𝜆0𝐵 contains 𝐴 and 
the greatest number 𝜇0 such that 𝐴 contains 𝜇0𝐵

and we define the Asplund’s

distance between A and B:

𝑑𝐴𝑠 𝐴, 𝐵 = 𝐿𝑛
𝜆0

𝜇0



ASPLUND’s Metrics

Multiplicative Asplund Metric

Now we propose to extend this approach to a pair 𝑓, 𝑔 of images:

𝑑𝐴𝑠
⨻ 𝑓, 𝑔 = 𝐿𝑛

𝜆0

𝜇0

Note that such a distance does 

not change when one  function

is replaced by an homothetic

⇨ 𝑑𝐴𝑠 is insensitive to lighting

variations modelized by  λ ⨻.

Such a metric performs a “double sided probing” of 𝑓 𝑏𝑦 𝑔



ASPLUND’s Metrics

Example of application : Target tracking

a) b) c) d) e)

a) Initial image b) Bright target 𝑡1 (a bright brick of the wall)

c) Corresponding Asplund’s map (values of 𝑑𝐴𝑠
⨻ (𝑓|𝐷𝑡1

, 𝑡1))

d) Dark target 𝑡2 (a dark brick of the wall)

e) Corresponding Asplund’s map (values of 𝑑𝐴𝑠
⨻ (𝑓|𝐷𝑡2

, 𝑡2))



ASPLUND’s Metrics   

Remark: The Multiplicative Asplund’s metric is sensitive to 
noise.

Such a drawback is shared with other “atomic” metrics like
Hausdorff.

We have proposed a solution to limit this effect. It consists of 
discarding the most penalizing points (see the following Ref.)

M. Jourlin, E. Couka, B. Abdallah, J. Corvo and J. Breugnot, “Asplund's metric 
defined in the Logarithmic Image Processing (LIP) framework: A new way to 
perform double-sided image probing for non-linear grayscale pattern matching”, 

Pattern Recognition, 47 (9),(2014) 2908-2924.



ASPLUND’s Metrics

More recently, I have introduced a new kind of Asplund’s metric: the 
Additive Asplund’s Metric. In fact, the approach is quite different: 
the double sided probing is no more performed thanks to homothetics
of the probe, but by applying a LIP addition of a constant:

Given two grey level images 𝑓 and 𝑔, we define two real numbers 𝐶1
and 𝐶2 according to:

𝐶1 = 𝐼𝑛𝑓 𝐶, 𝑔 ⨹ 𝐶 ≥ 𝑓

𝐶2 = 𝑆𝑢𝑝 {𝐶, 𝑔 ⨹ 𝐶 ≤ 𝑓}

where 𝐶 lies ∈ ] − ∞, 𝑀[

𝑑𝐴𝑠
⨹ 𝑓, 𝑔 = 𝐶1 ⨺ 𝐶2

∈ [0, 𝑀[



ASPLUND’s Metrics  

Advantage of this approach: We have seen the addition/ 
subtraction of a constant simulates exposure time variation, as well as 
variation of the source intensity.

⇨ the “additive” double sided probing becomes insensitive to such
variations

This opens the way to a lot of applications like pattern recognition, 
target tracking… independently of the lighting conditions

Recall: Thanks to the paper of Brailean, the consistency of the LIP 
operators with Human Vision permits to process and analyze images 
acquired in reflexion as a human eye would do.

Let us begin by a theoretical example:



ASPLUND’s Metrics 

Consider Lena and a darkened image

𝑓 𝐶 ⨹ 240
target (magnified)

Compute the Asplund’s maps of the target on f and f ⨹ 240: 



ASPLUND’s Metrics 

Real case:

Expo: Expo:

170ms 50ms

garbage can

(magnified)

Additive Asplund’s

map



ASPLUND’s Metrics 

Our goal is not to expose in depth the possible use of Asplund’s
metrics.

Nevertheless, I must highlight the following point: When we
compute the Asplund’s distances 𝑑𝐴𝑠

⨻ 𝑓, 𝑔 and 𝑑𝐴𝑠
⨹ 𝑓, 𝑔

we use in fact the equivalence classes 𝑓⨻ and 𝑓⨹ of 𝑓. For 
example,

𝑓⨹ = {𝑔, ∃𝐾 ∊ 0, 255 , 𝑓 = 𝑔 ⨹ 𝐾 or 𝑔 = 𝑓 ⨹ 𝐾}

This explains that the result of 𝑑𝐴𝑠
⨹ 𝑓⨹, 𝑔 ⨹ is insensitive to 

lighting variations simulated by the LIP addition of a constant.



ASPLUND’s Metrics 

Perspective: We have seen that LIP operators are particularly
efficient to enhance low-light images. Nevertheless, such an 
enhancement obviously increase together the signal and the noise.On
another hand, Asplund’s metrics are strongly insensitive to lighting
variations and particularly to   underlighting, but they remain
sensitive to noise. In such conditions, it appears that a step of noise 
filtering can improve the potential of Asplund’s metrics. Some
preliminary works show that noise filtering obtained by means of 
“Deep Learning” approaches performs well.

Thus we can expect to dispose of powerful tools to perform images 
acquired under variable lighting.



Image Processing under Variable Lighting:
LIP Model and Asplund’s Metrics
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