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@ Metric Learning From A Classification Point of View

© Perceptual Color Distance

© Local Metric Learning for Color Distance Approximation
@ Dataset of color patches
@ Metric Learning Algorithm
@ Quality Assessment of the Metrics
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Metric Learning From A Classification Point of View

Importance of metrics

Pairwise metric

The notion of metric plays an important role in many domains such as
classification, regression, clustering, ranking, etc.
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Metric Learning From A Classification Point of View

Minkowski distances: family of distances induced by ¢, norms over R

1/p

d
dp(x,X) = [Ix = x'[|, = Z!x;— ilP

e p = 1: Manhattan distance d;(x,x’) Z |x; — x|

@ p = 2: Euclidean distance
r 1/2
d(xx) =Y lxi—xP)| =/x—x)T(x—x).
i=1
@ For p = 00, The Chebyshev distance d(x,x’) = max; |x; — x/|

@ Minkowski distances - unit circles for various values of p :
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Metric Learning From A Classification Point of View

Choosing the right metric?
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Metric Learning From A Classification Point of View

Choosing the right metric?

u . |
q, E «
s\
Each problem has its own notion of similarity, which is often badly
captured by standard metrics. J
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Metric Learning From A Classification Point of View

Metric Learning: Adapt the metric to the problem of

interest

Learning the metric from data
Basic idea: learn a metric that assigns small (resp. large) distance to pairs

of examples that are semantically similar (resp. dissimilar).

Learn a distance

or a similarity

It typically induces a change of representation space which satisfies the

semantic constraints.

From a classification standpoint, we aim at moving closer examples of the
same class while putting far away examples of different classes.
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Metric Learning From A Classification Point of View

Metric Learning - Intuition

e e
® o®
4 )

We need to define some contraints to satisfy between examples:
@ Must-link constraints: examples must be close

@ Cannot-link constraints: examples must be far away

@ Relative: x is closer to y than z
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Metric Learning From A Classification Point of View

"Learnable” metric - "Mahalanobis” distance

Mahalanobis (pseudo) distance

o For any x,x' € RY, it is defined as:

dm(x,x’) = \/(x —x)TM(x — x')

where M € Si is symmetric Positive Semi-Definite d x d matrix
This implies that M = L L for some matrix L.
When M = | you recover the Euclidean Distance

@ Equivalent to Euclidean distance after linear projection wrt L

dm(x,x') = \/(x —x)TLTL(x — x) = \/(Lx — Lx)T(Lx — LX)

o If M has rank k < d, then L € R*9 reduces data dimension

@ Work with the squared distance for convenience
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Metric Learning From A Classification Point of View

Metric Learning - Basic recipe

@ Choose a parameterized distance or similarity function
The function is parameterized by a set of parameters M
@ Collect semantic constraints from data pairs/triplets
o S = {(x;,x/) : x; and x; are similar}
o D = {(xj,x;) : xj and x; are dissimilar}
o R = {(xj,Xj,Xk) : X; is more similar to x; than to x}
© Estimate the parameters M s.t. the metric best fulfills the semantic
constraints
— Solve an optimization problem of the form

S

M = argmin [{(M,S,D,R)+ Areg(M)
M —_—

loss function regularization

where £ is a loss function and reg a regularization over M.
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Metric Learning From A Classification Point of View

One of the most famous algorithm: LMNN

Large Margin Nearest Neighbor [Weinberger et al.,09]

@ For k-Nearest-Neighbor classification
LS = {(xi,yi}"_;, x; € RY, y; € Y discrete label set}
@ Constraints derived from labeled data
o S = {(xi,xj) : ¥i = yj,x; belongs to the k-neighborhood of x;}
o R = {(x,-,xj,xk) : (X,',Xj) S S,y,' 7é yk}

BEFORE local neighborhood AFTER

\/’n;a_rgiﬁ\\

O Class 1 P SN
. Class 2 /
‘ Class 3

target neighbors
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Metric Learning From A Classification Point of View

One of the most famous algorithm: LMNN

Formulation
min (1 —p) Yoo dulxix) +p> i
M€S+7€20 (Xizxj)eslmnn ”Jzk

s.t. d,%,,(x,-,xk) = d,%n(x,-,xj) > 1— &k V(X,‘,Xj,Xk) e R,

where p € [0, 1] controls the trade-off between pulling target neighbors
closer together and pushing away impostors.

@ Convex formulation
@ Number of constraints in the order of kn?

o Efficient solver based on projected gradient descent
o Other alternative: only consider closest " impostors”

@ Which metric to build the constraints?

@ Possible overfitting in high dimensions (lack of regularization)
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Metric Learning From A Classification Point of View

Importance of the regularization

Adding a regularization term to prevent overfitting

e Simple and classic choice: |M||% = Zf{j M?j (Frobenius norm)

o Using some prior metrics : |M — 1||%

o LogDet divergence tr(MMy ') — logdet(MM,*) (used in ITML
[Davis et al.,07]).
Remain close to a good prior metric, implicitly ensures that M is
PSD, convex in M

o Feature selection with Mixed L1 norm: [[M|21 = ij |M;]| L2
regularization over the columns, convex but non smooth

e Favoring low rank matrices for dimensionality reduction with trace (or
nuclear) norm ||M||, = 27:1 oi(M) (convex but non smooth, use
efficient Frank-Wolfe algorithms)
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Metric Learning From A Classification Point of View

Non-Linear Extensions

3 main types off approaches

Linear formulations are have the advantage to be convex and robust to overfitting
but are unable to capture nonlinear structure

@ Kernelized metrics: learn the metric from a feature space induced by a
kernel - often very technical/ Other solution: use KPCA as a pre-process.

@ Learn non linear mappings: Deep Metric Learning (siamese networks)

@ Local metrics: learn many metrics for differ-
ent part of the space. Pb: space splitting, blow-up of parameters, comparisons
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Perceptual Color Distance
Application: RGB color model

RGB color model
The RGB color model is an additive color model in which red, green, and
blue light are added together in various ways to reproduce a broad array of

colors.
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Perceptual Color Distance

Color Differences

Required Features for Color Differences

In computer vision, the evaluation of color differences is required for many
applications (image segmentation, visual salient region detection, edge and
corner detection, etc.). For most of these applications, the color difference
has to be:

@ robust to acquisition condition variations,
o discriminative,

@ and above all, perceptual, i.e. proportional to the color difference
perceived by human observers.
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Perceptual Color Distance

Limitations of the of Non Uniform Spaces

- CLE 2°

=]

The RGB space is known to be non uniform
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Perceptual Color Distance

From non uniform to uniform spaces

Solution
A classical strategy consists in using a default transformation (assuming
standard viewing conditions) from the RGB components to uniform
spaces, like L*a*b* or L*u*v* spaces and then computing:

@ either the Euclidean Distance

@ or the AE2000

How to pass from RGB space to AE20007

AE2000

RGB —— XYZ L*a*B*
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Perceptual Color Distance

How to pass from RGB space to AE20007

RGB —————— XYZ ———— L*a*B* —— AE2000

RGB 2.4
== + 0.055
sRGB = L
1.055

Then

X R
Y|=T|G
V4 B

with

0.4125 0.3576 0.1804
T ={0.2127 0.7152 0.0722
0.0193 0.1192 0.9503
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How to pass from RGB space to AE20007

AE2000

RGB —————— XYZ ———— L*a*B*

Y
x Fl—) -1

2033t+16  jf ¢+ < (0.008856

1 q
(e) = { £ if t>0.008856
116
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Perceptual Color Distance

How to pass from RGB space to AE20007

RGB ————— > XYZ ——— [ *a*B* ———> AE2000
Clp= (@l +( i=1.2 L'=(Lt+LH2 T=1-0.17 cos(h’'—30°)+0.24 cos(2")
_ CiptCi, A 7
= Lab T Coan T=(Cl+C)2 +0.32 cos(3h'+6°)—0.20 cos(4h'—63°)
i
G= nik h{—hi=180° C|C1#0 B
=(1+G)a} /’i/'+3(0“ A6=30 =215
a=(1+G)a] BRI gl 180°% (] + h2)<360°; e 25
Ci= (@) + _ 2 ‘
e CiC3#0 |
=l 0 i i=1.2 nj+hi—360° Re=24/=7
VS tan~'(bEa))  otherwise =1 ! 37 : i —hY>180°; (h]+h2)=360° I\
AL =L3—L% CC3#0 0.015(L'—50)
AC=Ci—C] (hi+h3) CiC=0 R - i
0 Cici=0 ,
o] B CIC#0; [~ hi|=180° N . - Se=170.045C
U] (—h)=360  CICI#0; (= hi)>180° AE=AE(LLALbT Sy=1+0.015C'T
(3—h})+360  CJCi#0; (Wj—h))<—180° B 3(AL'>Z+<AC'>Z+<AH’>Z+R (AC’)(AH’) e
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o
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Perceptual Color Distance

Effect of the acquisition conditions on the perception of the color

However, the acquisition device settings (color filtering, white balance,
gamma correction, demosaicing, etc.) or the illumination conditions are
not taken into acccount in the default transformations.

MLAIF, Nice
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Local Metric Learning for Color Distance Approximation

Contributions - [Perrot et al., ECCV'14]

Our strategy

RGB ——— > XYZ ——— > L*a*B* —— AE2000

\—/

Metric Learning

v

Contributions

© Creation of a database of similar pairs of color patches (used as
must-link constraints) — benchmark for the community.

@ Optimization of local metrics than correctly estimate AE2000 in the
projected space — one possible way to capture non linearity.

© Experiments in image segmentation.
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Dataset of color patches - Requirements

@ Patches of color must be well distributed in the RGB cube to allow
the metrics to generalize well.

@ Both the RGB components and the true AE2000 (from a
colorimetric point of view) have to be known for each patch.

© Since hue, chroma and luminance impact the perceptual color
difference, the dataset has to cover variations w.r.t. these 3
features.

@ To get reference distances whatever the acquisition conditions, we
used four different cameras:

Kodak DCS Pro 14n

e Konica Minolta Dimage Z3
e Nikon Coolpix 56150

e Sony DCR-SR32

We get 697200 Pairs of colors
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Local Metric Learning for Color Distance Approximation Dataset of color patches

We used two well-known sets of patches:
1/ Farnsworth-Munsell 100 Hue Color
2/ Munshell atlas

We used a sprectroradiometer (Minolta CS 1000) to measure the spectra
of each patch to get the true L*a*b* coordinates under D65 illuminant.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Metric learning setting

o Input X x X x R C [0,1]® x [0,1]® x AEx00o
@ Mahalanobis d?(x — x') = (x — x') TM(x — x/)
@ M symmetric PSD matrix (x” Mx > 0)

e M=L"L

o d?(x —x') = (Lx — Lx') T(Lx — LX)

4 Learning sample {X,‘,X/,',AEQOO()(X,',X/;)}I'-”, AEQOOO(X,’,X/,') <~5

= Find M to obtain a good approximation of AEyggo
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Learning local metrics

Algorithm 1: Local metric learning

input : A training set S of patches; a parameter K > 2
output: K local Mahalanobis distances and one global metric
begin
Run K-means on S and deduce K+1 training subsets T; (j =0,1...,K) of triplets
Tj = {(xi, x|, Do)},
AEx < 5)
for j=0— K do
| Learn M; by solving the convex optimization Problem (1) using T;

(where (x;,x{) are similar patches in region C; with a

argmin &7, (M) + Ayl M3 (1)
M;=0

where:
Er(M)) = 7 X xw.abn)e; [(x = X)TMj(x = x') — AFoo(x,x)?|,
@ \j > 0 is a regularization parameter,

|| - || 7 denotes the Frobenius norm.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical Analysis

Two types of possible theoretical results on a learned metric:

@ Consistency guarantee of the metric learning algorithm — Uniform
stability

@ Generalization guarantee of the algorithm making use of the learned

metric.
complexity(M))

R(M) < Ro(M) + O ( NG
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical bound on the learned metrics

Intuitively, an algorithm is said stable if it is robust to small changes in
the training sample, i.e., the variation in its output h is small.

Definition (Uniform stability)

An algorithm A has uniform stability = with respect to a loss function / if
the following holds:

| &

VS, Vi e {1,...,n},sup,|l(hs,z) — I(hs;, z)| < —,

=]

where & is a positive constant, S; is obtained from the training sample S
by replacing the ith example z; € S by another example z/ drawn i.i.d.
from Dy, hs and hs, are the hypothesis learned by A from S and S;
respectively.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Uniform stability

When the previous Definition is fulfilled, the following generalization
bound in O(1/+/n) holds.

Theorem (Uniform stability)

Let S be a training sample of size n and § > 0. For any algorithm A with
uniform stability 7~ with respect to a loss function / bounded by 1, with
probability 1 — §, we have:

1

A~ K n5
RhSSRh5+;+(2H+1) E

Uniform stability can be used to derive generalization guarantees for
hypothesis classes that are difficult to analyze with classic complexity
arguments, such as k-nearest neighbors or support vector machines.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical bound on the learned metrics

Theorem
Let Gy, Gy, ..., Cx be the regions considered, then for any set of metrics
M = {My,..., Mk} learned by Algorithm 1, each region T; has the

2D#
uniform stability in HE with KK = —*, then we have with probability at
J J
least 1 — 0 over the global loss:

2(K+1)In2+2lIn 2/5Jr 2(KD* +1)
n An

e(M) < ér(M)+ LB\/

(4(K+1))

)
2n

2(KD? + 1)
+Am x\— = ’
ax( 7

" (2(KD4 +1)

. +2(K + 1)Amax))

where D = maxi<j<k Dj, Lg = max{ A\}";X,Afnax} is the bound on the
loss function and A\ = ming<j<k A; is the minimum regularization

parameter among the K + 1 learning problems used in Algorithm 1.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Quality Assessment of the Metrics

2 criteria:

@ Mean Absolute Difference

o STRESS
_ 2l — A (b i)
STRESS = 100\/( > F2AE2000 e (x, x)?
. > dm(x, x')?
~ S dw(x, ') AE2000 ¢ (x, x')
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics
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(b) Generalization to new cameras.

Baseline: Sharma et al.. Color Research Applications, 2005.
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Quality Assessment of the Metrics

Local Metric Learning for Color Distance Approximation

Interest of learning local metrics

Blue

. - 200
100 100

The RGB cube has been splitted into 20 regular regions, where the surface of each
represented ellipsoid corresponds to the RGB colors lying at the corresponding

learned local perceptual distance of 1 from the center of the ellipsoid.
MLAIF, Nice 32/38
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Image segmentation results

MS Luv/N,

CMS RGB/
CMS Local Metric/N.

Boundary Displacement Error
Probabilistic Rand Index

0 100 200 300 400 500 600 0 100 200 300 400 500
Average segment size Average segment size

(c) (d)

Figure: (a) Boundary Displacement Error (lower is better) versus the average
segment size.; (b) Probabilistic Rand Index (higher is better) versus the average
segment size.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Image Ground fruth (16) RGB (1207/20) L*u*v* (813/18) Metric leamning (180/17)
Ground fruth (26) RGB (832/31) L*u*v* (647/29) Metric leaming (203/28)

RGB (685/26) L*u*v* (804/26) Metric leaming (165/26)
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ocal Metric Learning for Color Distance Approxim Quality Assessment of Met

Image Ground truth (24) RGB (1022/37) L u*v* (931/33) Metfric learning (172/33)

Ground truth (4) RGB (99/4) L u"v* (88/4) Metric learning (16/4)

Image Ground truth (27) RGB (1343/31) L u*v* (1032/34) Metric learning (254/31)

R

Ground truth (12) RGB (748/13) L*u*v* (495/12) Metric learning (110/12)
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Improvement: Weighting local models

Solution: Combining weighted models [Zantedeschi et al.,CVPR'16]

e dU(X7X/) = Zszl VV,-dek(x,x’)
A different (convex) weighting for each pairs of regions

o Loss: 157, ;:1 2 xxery |dii(%,X') — AEaoo0(x, X))
@ Double regularization: D(W) = Z;’le Z}:l ||E,JT Wil

S(W) = Z,K:1 11::1 Zﬁ:l Zji'/:l Kijirje [ Wi — Wirje||
E and K embed prior and relative influence of the different metrics

v
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Local Metric Learn

ing for Color Distance Approximation

Experimental improvement
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Conclusion

Local metric
Simple model local models (3 x 3 matrices)

Generalization bound

Dataset of color patches

v

@ More complex models - Deep metric learning - regularizers

@ Incorporation of constraints from physics

@ Transfer learning
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