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Metric Learning From A Classification Point of View

Importance of metrics

Pairwise metric

The notion of metric plays an important role in many domains such as
classification, regression, clustering, ranking, etc.

lhc-logo

Introduction
Markov Models

Learning Edit Distances with EM

Learning from a d-dimensional space

In a numerical space, you are able to train different kinds of models

(called classifiers or hypotheses)...

?

?

y = ax+ b

?

Amaury Habrard Pattern Recognition & Machine Learning
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Metric Learning From A Classification Point of View

Minkowski distances: family of distances induced by `p norms over Rd

dp(x, x′) = ‖x− x′‖p =

(
d∑

i=1

|xi − x ′i |p
)1/p

.

p = 1: Manhattan distance d1(x, x′) =
d∑

i=1

|xi − x ′i |.

p = 2: Euclidean distance

d2(x, x′) =

(
d∑

i=1

|xi − x ′i |2
)1/2

=
√

(x− x′)T (x− x′).

For p =∞, The Chebyshev distance d∞(x, x′) = maxi |xi − x ′i |
Minkowski distances - unit circles for various values of p :

p=0.5 p=1 p=1.5 p=2 p=inftyp=0.3p=0
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Metric Learning From A Classification Point of View

Choosing the right metric?
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Metric Learning From A Classification Point of View

Choosing the right metric?

Each problem has its own notion of similarity, which is often badly
captured by standard metrics.
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Metric Learning From A Classification Point of View

Metric Learning: Adapt the metric to the problem of
interest

Learning the metric from data

Basic idea: learn a metric that assigns small (resp. large) distance to pairs
of examples that are semantically similar (resp. dissimilar).

Learn a distance

or a similarity

It typically induces a change of representation space which satisfies the
semantic constraints.
From a classification standpoint, we aim at moving closer examples of the
same class while putting far away examples of different classes.
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Metric Learning From A Classification Point of View

Metric Learning - Intuition

Metric Learning

We need to define some contraints to satisfy between examples:

Must-link constraints: examples must be close

Cannot-link constraints: examples must be far away

Relative: x is closer to y than z
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Metric Learning From A Classification Point of View

”Learnable” metric - ”Mahalanobis” distance

Mahalanobis (pseudo) distance

For any x, x′ ∈ Rd , it is defined as:

dM(x, x′) =
√

(x− x′)TM(x− x′)

where M ∈ Sd+ is symmetric Positive Semi-Definite d × d matrix
This implies that M = LTL for some matrix L.
When M = I you recover the Euclidean Distance

Equivalent to Euclidean distance after linear projection wrt L

dM(x, x′) =

√
(x− x′)TLTL(x− x′) =

√
(Lx− Lx′)T (Lx− Lx′)

If M has rank k ≤ d , then L ∈ Rk×d reduces data dimension

Work with the squared distance for convenience
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Metric Learning From A Classification Point of View

Metric Learning - Basic recipe

1 Choose a parameterized distance or similarity function
The function is parameterized by a set of parameters M

2 Collect semantic constraints from data pairs/triplets

S = {(xi , xj) : xi and xj are similar}
D = {(xi , xj) : xi and xj are dissimilar}
R = {(xi , xj , xk) : xi is more similar to xj than to xk}

3 Estimate the parameters M s.t. the metric best fulfills the semantic
constraints
→ Solve an optimization problem of the form

M̂ = arg min
M

`(M,S,D,R)︸ ︷︷ ︸
loss function

+ λreg(M)︸ ︷︷ ︸
regularization


where ` is a loss function and reg a regularization over M.
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Metric Learning From A Classification Point of View

One of the most famous algorithm: LMNN

Large Margin Nearest Neighbor [Weinberger et al.,09]

For k-Nearest-Neighbor classification
LS = {(xi , yi}ni=1, xi ∈ Rd , yi ∈ Y discrete label set}
Constraints derived from labeled data

S = {(xi , xj) : yi = yj , xj belongs to the k-neighborhood of xi}
R = {(xi , xj , xk) : (xi , xj) ∈ S, yi 6= yk}
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Metric Learning From A Classification Point of View

One of the most famous algorithm: LMNN

Formulation

min
M∈Sd+,ξ≥0

(1− µ)
∑

(xi ,xj )∈Slmnn

d2
M(xi , xj) + µ

∑
i ,j ,k

ξijk

s.t. d2
M(xi , xk)− d2

M(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R,

where µ ∈ [0, 1] controls the trade-off between pulling target neighbors
closer together and pushing away impostors.

Convex formulation

Number of constraints in the order of kn2

Efficient solver based on projected gradient descent
Other alternative: only consider closest ”impostors”

Which metric to build the constraints?

Possible overfitting in high dimensions (lack of regularization)
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Metric Learning From A Classification Point of View

Importance of the regularization

Adding a regularization term to prevent overfitting

Simple and classic choice: ‖M‖2
F =

∑d
i ,j M2

ij (Frobenius norm)

Using some prior metrics : ‖M− I‖2
F

LogDet divergence tr(MM−1
0 )− logdet(MM−1

0 ) (used in ITML
[Davis et al.,07]).
Remain close to a good prior metric, implicitly ensures that M is
PSD, convex in M

Feature selection with Mixed L2,1 norm: ‖M‖2,1 =
∑d

i ‖Mi‖ L2

regularization over the columns, convex but non smooth

Favoring low rank matrices for dimensionality reduction with trace (or
nuclear) norm ‖M‖∗ =

∑d
i=1 σi (M) (convex but non smooth, use

efficient Frank-Wolfe algorithms)
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Metric Learning From A Classification Point of View

Non-Linear Extensions
3 main types off approaches

Linear formulations are have the advantage to be convex and robust to overfitting
but are unable to capture nonlinear structure

Kernelized metrics: learn the metric from a feature space induced by a
kernel - often very technical/ Other solution: use KPCA as a pre-process.

Learn non linear mappings: Deep Metric Learning (siamese networks)

Local metrics: learn many metrics for differ-
ent part of the space. Pb: space splitting, blow-up of parameters, comparisons

Linear metric Kernelized metric Multiple local metrics
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Perceptual Color Distance

Application: RGB color model

RGB color model

The RGB color model is an additive color model in which red, green, and
blue light are added together in various ways to reproduce a broad array of
colors.
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Perceptual Color Distance

Color Differences

Required Features for Color Differences

In computer vision, the evaluation of color differences is required for many
applications (image segmentation, visual salient region detection, edge and
corner detection, etc.). For most of these applications, the color difference
has to be:

robust to acquisition condition variations,

discriminative,

and above all, perceptual, i.e. proportional to the color difference
perceived by human observers.
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Perceptual Color Distance

Limitations of the of Non Uniform Spaces

The RGB space is known to be non uniform
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Perceptual Color Distance

From non uniform to uniform spaces

Solution

A classical strategy consists in using a default transformation (assuming
standard viewing conditions) from the RGB components to uniform
spaces, like L∗a∗b∗ or L∗u∗v∗ spaces and then computing:

either the Euclidean Distance

or the ∆E2000

How to pass from RGB space to ∆E2000?

RGB XYZ L*a*B* ∆E2000
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Perceptual Color Distance

How to pass from RGB space to ∆E2000?

RGB XYZ L*a*B* ∆E2000

sRGB =

(
RGB

255 + 0.055

1.055

)2.4

ThenX
Y
Z

 = T

R
G
B


with

T =

0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9503
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Perceptual Color Distance

How to pass from RGB space to ∆E2000?

RGB XYZ L*a*B* ∆E2000

L∗ = 116f

(
Y

Yw

)
− 16

a∗ = 500

(
f

(
X

Xw

)
− f

(
Y

Yw

))
b∗ = 200

(
f

(
Y

Yw

)
− f

(
Z

Zw

))
with

f (t) =

{
t

1
3 if t > 0.008856

903.3t+16
116 if t ≤ 0.008856

A. Habrard (Lab. H. Curien) Local Metric Learning MLAIF, Nice 19 / 38



Perceptual Color Distance

How to pass from RGB space to ∆E2000?

RGB XYZ L*a*B* ∆E2000
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Perceptual Color Distance

Effect of the acquisition conditions on the perception of the color

However, the acquisition device settings (color filtering, white balance,
gamma correction, demosaicing, etc.) or the illumination conditions are
not taken into acccount in the default transformations.
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Local Metric Learning for Color Distance Approximation

Contributions - [Perrot et al., ECCV’14]

Our strategy

RGB XYZ L*a*B* ∆E2000

Metric Learning

Contributions

1 Creation of a database of similar pairs of color patches (used as
must-link constraints) → benchmark for the community.

2 Optimization of local metrics than correctly estimate ∆E2000 in the
projected space → one possible way to capture non linearity.

3 Experiments in image segmentation.
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Local Metric Learning for Color Distance Approximation Dataset of color patches

Dataset of color patches - Requirements

1 Patches of color must be well distributed in the RGB cube to allow
the metrics to generalize well.

2 Both the RGB components and the true ∆E2000 (from a
colorimetric point of view) have to be known for each patch.

3 Since hue, chroma and luminance impact the perceptual color
difference, the dataset has to cover variations w.r.t. these 3
features.

4 To get reference distances whatever the acquisition conditions, we
used four different cameras:

Kodak DCS Pro 14n
Konica Minolta Dimage Z3
Nikon Coolpix S6150
Sony DCR-SR32

We get 697200 Pairs of colors
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Local Metric Learning for Color Distance Approximation Dataset of color patches

We used two well-known sets of patches:
1/ Farnsworth-Munsell 100 Hue Color

2/ Munshell atlas

We used a sprectroradiometer (Minolta CS 1000) to measure the spectra
of each patch to get the true L∗a∗b∗ coordinates under D65 illuminant.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Metric learning setting

Setting

Input X × X × R ⊆ [0, 1]3 × [0, 1]3 ×∆E2000

Mahalanobis d2(x− x′) = (x− x′)TM(x− x′)

M symmetric PSD matrix (xTMx ≥ 0)

M = LTL
d2(x− x′) = (Lx− Lx′)T (Lx− Lx′)

Learning sample {xi , x′i ,∆E2000(xi , x
′
i )}mi , ∆E2000(xi , x

′
i ) ≤∼ 5

⇒ Find M to obtain a good approximation of ∆E2000
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Learning local metrics

Algorithm 1: Local metric learning
input : A training set S of patches; a parameter K ≥ 2
output: K local Mahalanobis distances and one global metric
begin

Run K -means on S and deduce K+1 training subsets Tj (j = 0, 1 . . . ,K) of triplets

Tj = {(xi, x
′
i ,∆E00)}nji=1 (where (xi, x

′
i ) are similar patches in region Cj with a

∆E2000 < 5)
for j = 0→ K do

Learn Mj by solving the convex optimization Problem (1) using Tj

arg min
Mj�0

ε̂Tj (Mj) + λj‖Mj‖2
F , (1)

where:

ε̂Tj
(Mj) = 1

nj

∑
(x,x′,∆E00)∈Tj

∣∣(x− x′)TMj(x− x′)−∆E00(x, x′)2
∣∣,

λj > 0 is a regularization parameter,

‖ · ‖F denotes the Frobenius norm.

A. Habrard (Lab. H. Curien) Local Metric Learning MLAIF, Nice 25 / 38



Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical Analysis
Two types of possible theoretical results on a learned metric:

1 Consistency guarantee of the metric learning algorithm → Uniform
stability

2 Generalization guarantee of the algorithm making use of the learned
metric.

R(M) ≤ Rn(M) +O
(

complexity(M)√
n

)
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical bound on the learned metrics

Intuitively, an algorithm is said stable if it is robust to small changes in
the training sample, i.e., the variation in its output h is small.

Definition (Uniform stability)

An algorithm A has uniform stability κ
n with respect to a loss function l if

the following holds:

∀S , ∀i ∈ {1, ..., n}, supz |l(hS , z)− l(hSi , z)| ≤ κ

n
,

where κ is a positive constant, Si is obtained from the training sample S
by replacing the ith example zi ∈ S by another example z ′i drawn i.i.d.
from DX , hS and hSi are the hypothesis learned by A from S and Si
respectively.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Uniform stability

When the previous Definition is fulfilled, the following generalization
bound in O(1/

√
n) holds.

Theorem (Uniform stability)

Let S be a training sample of size n and δ > 0. For any algorithm A with
uniform stability κ

m with respect to a loss function l bounded by 1, with
probability 1− δ, we have:

RhS ≤ R̂hS +
κ

n
+ (2κ+ 1)

√
ln 1
δ

2n

Uniform stability can be used to derive generalization guarantees for
hypothesis classes that are difficult to analyze with classic complexity
arguments, such as k-nearest neighbors or support vector machines.
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Local Metric Learning for Color Distance Approximation Metric Learning Algorithm

Theoretical bound on the learned metrics

Theorem

Let C0,C1, . . . ,Ck be the regions considered, then for any set of metrics
M = {M0, . . . ,MK} learned by Algorithm 1, each region Tj has the

uniform stability in Knj with K =
2D4

j

λj
, then we have with probability at

least 1− δ over the global loss:

ε(M) ≤ ε̂T (M) + LB

√
2(K + 1) ln 2 + 2 ln 2/δ

n
+

2(KD4 + 1)

λn

+

(
2(KD4 + 1)

λ
+ ∆max(

2(KD2 + 1)
√
λ

+2(K + 1)∆max)

)√
ln( 4(K+1)

δ
)

2n
,

where D = max1≤j≤K Dj , LB = max{∆max√
λ
,∆2

max} is the bound on the

loss function and λ = min0≤j≤K λj is the minimum regularization
parameter among the K + 1 learning problems used in Algorithm 1.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Quality Assessment of the Metrics

2 criteria:

Mean Absolute Difference

STRESS

STRESS

STRESS = 100

√(∑
(dM(x, x′)− F∆E2000ref (x, x′))2∑

F 2∆E2000ref (x, x′)2

)

F =

∑
dM(x, x′)2∑

dM(x, x′)∆E2000ref (x, x′)
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics
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(b) Generalization to new cameras.

Baseline: Sharma et al., Color Research Applications, 2005.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Interest of learning local metrics

The RGB cube has been splitted into 20 regular regions, where the surface of each

represented ellipsoid corresponds to the RGB colors lying at the corresponding

learned local perceptual distance of 1 from the center of the ellipsoid.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Image segmentation results
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Figure: (a) Boundary Displacement Error (lower is better) versus the average
segment size.; (b) Probabilistic Rand Index (higher is better) versus the average
segment size.
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Improvement: Weighting local models

Metric Learning as Convex Combinations of Local Models
with Generalization Guarantees

Valentina Zantedeschi, Rémi Emonet, Marc Sebban
firstname.lastname@univ-st-etienne.fr

Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

Abstract

Over the past ten years, metric learning allowed the im-
provement of numerous machine learning approaches that
manipulate distances or similarities. In this field, local met-
ric learning has been shown to be very efficient, especially
to take into account non linearities in the data and bet-
ter capture the peculiarities of the application of interest.
However, it is well known that local metric learning (i) can
entail overfitting and (ii) face difficulties to compare two
instances that are assigned to two different local models.
In this paper, we address these two issues by introducing a
novel metric learning algorithm that linearly combines lo-
cal models (C2LM). Starting from a partition of the space
in regions and a model (a score function) for each region,
C2LM defines a metric between points as a weighted com-
bination of the models. A weight vector is learned for each
pair of regions, and a spatial regularization ensures that the
weight vectors evolve smoothly and that nearby models are
favored in the combination. The proposed approach has the
particularity of working in a regression setting, of working
implicitly at different scales, and of being generic enough so
that it is applicable to similarities and distances. We prove
theoretical guarantees of the approach using the framework
of algorithmic robustness. We carry out experiments with
datasets using both distances (perceptual color distances,
using Mahalanobis-like distances) and similarities (seman-
tic word similarities, using bilinear forms), showing that
C2LM consistently improves regression accuracy even in
the case where the amount of training data is small.

1. Introduction

In many machine learning tasks, like classification, clus-
tering or ranking, decisions are based on distance or sim-
ilarity functions. In order to capture the peculiarities of
the data of the applications at hand, a lot of work has
gone during the past ten years into automatically optimiz-

Figure 1: Limitation of local metric learning: While two points
belonging to the same region (e.g. in R1) can be managed by
the corresponding locally-learned metric (depicted as an ellipse),
two points from different regions (e.g. in R2 and R4) cannot be
accurately compared using a single local metric.

ing those functions, topic referred to as metric learning
[9, 3, 4]. Most of the time, a unique global metric is learned
over the input space, typically taking the form of a (lin-
ear) geometric transformation. This is the case for most of
the Mahalanobis-like metric learning approaches, such as
LMNN [22] or ITML [5]. However, it turns out that for data
that present multi-modalities and/or non-linearities, local
metric learning has been shown to be very efficient because
of its flexibility to capture well geometric variations of the
input space. On the other hand, a major problem of local
metric learning is that it can entail overfitting. Some recent
solutions have been proposed based on feature space dimen-
sionality reduction [8], manifold regularization [21] or gen-
erative models [15]. However, those approaches mainly fo-
cus on improving the results locally, i.e. while comparing
instances of the “same region” of the input space. There-
fore, they are not suited to compare points far from each
other. This limitation is illustrated in Figure 1.

One of the main objectives of our paper is to address this
pitfall by learning convex combinations of local metrics that
are not only good locally, but also globally relevant. Our
algorithm, called Convex Combinations of Local Models
(C2LM), basically optimizes for any pair of regions a vector
of weights corresponding to the contribution of each local
model while computing the distance or similarity between

Solution: Combining weighted models [Zantedeschi et al.,CVPR’16]

dij(x, x′) =
∑K

k=1 WijdMk
(x, x′)

A different (convex) weighting for each pairs of regions

Loss: 1
n

∑K
i=1

∑i
j=1

∑
x,x′∈Rij

|dij(x, x′)−∆E2000(x, x′)|

Double regularization: D(W ) =
∑K

k=1

∑i
j=1 ‖ET

ij Wij‖
S(W ) =

∑K
i=1

∑i
j=1

∑K
i ′=1

∑i ′

j ′=1 Kiji ′j ′‖Wij −Wi ′j ′‖
E and K embed prior and relative influence of the different metrics
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Local Metric Learning for Color Distance Approximation Quality Assessment of the Metrics

Experimental improvement
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(a) Results on unseen colors
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(b) Results on unseen cameras
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(c) Results on wordsim353 dataset

Figure 5: Comparison of our method and local metric learning approaches, such as Perrot et al.’s method, for the application on perceptual
color distances (5a and 5b) and for the application on word semantic similarities (5c). The used criterion is the loss over the test instances.

�2 = 10000 for the first application and to �1 = 0.0001
and �2 = 100 for the second one.

For the application on unseen colors, we show the mean
results of a 6-fold cross validation of the color patches set,
iterated five times. In Figure 5a, we represent the varia-
tion of the test loss over the number of clusters. We notice
that as the number of clusters increases the empirical test
loss decreases: a set of local metrics captures much better
the underlying geometry of the color space than a unique
global metric (K = 1). Moreover, with a small number of
clusters, the learned linear combinations are more expres-
sive than the local metrics: thanks to the prior influence
and similarity regularizations, we successfully prevent the
model from overfitting the training instances. This trend is
more and more important as the number of clusters grows.
For the application on unseen cameras, Figure 5b shows the
mean results of a 4-fold cross validation (leave one camera
out) of the color pairs set, iterated 3 times. Once again, our
method outperforms the state of the art. For both tasks, we
can note that with a very limited number of clusters, that is
only 5, our test loss is always smaller than every test loss
the approach of [17] could attain, even with 30 clusters. In
addition, we use the learned color metrics to perform image
segmentation and provide illustrations in the supplementary
material.

Concerning the application on semantic similarity, Fig-
ure 5c presents the mean results of a 6-fold cross validation,
iterated five times. We can note that learning metrics on the
word embedding gives better results than applying directly
the cosine similarity, but also that the local metrics fail to
improve the test error with respect to a global bilinear form.
On the contrary, C2LM converges with a limited number

of clusters to an enhanced test error. We also notice that,
against the trend, the test error increases when passing from
one to two clusters. This can be explained by the fact that
the quality of the local models is so poor that the learned
convex combinations of them cannot be good.

6. Conclusion
In this paper, we proposed a new method for learning

convex combinations of local models given a prior knowl-
edge on their correlations. We proved that our learning al-
gorithm is theoretically founded w.r.t. the algorithmic ro-
bustness framework. Empirically, our approach has better
results than the state of the art to estimate perceptual color
distances and semantic word similarities.
So far, we assumed that the local models were provided. A
possible perspective of this work is to jointly learn the lo-
cal metrics and their linear combinations. The optimization
problem would take the form of a double regression, one
over the points belonging to the same region and one for all
the others. In this way, we could guarantee that the local
models perform well both locally and globally speaking by
means of regularization.
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