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Outline

• Why is optimization difficult?

• From gradient descent to evolution strategy

• From first order (gradient descent) to second order (variable 
metric): CMA-ES

• Practical advice and code examples
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…feel free to ask questions…
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Objective

• in theory: convergence to the global optimum

• in practice: find a good solution iteratively as quickly 
as possible
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f : ℝn → ℝ, x ↦ f(x)

minimize an objective function
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Objective: Important Scenarios

• evaluating f is expensive and/or dominates the costs
hence quick means small number of �  evaluations

• search space dimension n is large

• we can (inexpensively) evaluated the gradient of f 
� , while �  


• we can parallelize the evaluations of f 

f

f(x) ∈ ℝ ∇f(x) ∈ ℝn
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Objective

 6

f : ℝn → ℝ, x ↦ f(x)

minimize an objective function

What Makes an Optimization Problem Difficult?
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• non-linear, non-quadratic
on linear and quadratic functions   

specialized search policies are available

• non-convexity

• dimensionality (size of search space) and non-separability
dimension considerably larger than three with  

 dependencies between the variables 

• multimodality

• ruggedness
high frequency modality, non-smooth, discontinuous

• ill-conditioning
varying sensitivities,  

worst case: non-smooth concave level sets
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In any case, the objective function must be highly regular

What Makes an Optimization Problem Difficult?
• non-linear, non-quadratic

on linear and quadratic functions   
specialized search policies are available

• non-convexity

• dimensionality (size of search space) and non-separability
dimension considerably larger than three with  

 dependencies between the variables 

• multimodality

• ruggedness
high frequency modality, non-smooth, discontinuous

• ill-conditioning
varying sensitivities,  

worst case: non-smooth concave level sets
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dimensionality: On Separable Functions
• Separable functions: for all � , for all � ,  
 
              �  is independent of �

• Additively decomposable functions:  

            �  

are separable

can be solved with �  one-dimensional optimizations

x ∈ ℝn i

arg min
xi

f(x) x

f(x) =
n

∑
i=1

gi(xi), x = (x1, …, xn)

n

 8
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• non-linear, non-quadratic, non-convex
on linear and quadratic functions 

specialized search policies are available

• dimensionality (size of search space) and non-
separability

dimension considerably larger than three with  
 dependencies between the variables 

• multimodality

• ruggedness
high frequency modality, non-smooth, discontinuous

• ill-conditioning
varying sensitivities,  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Section Through a 5-Dimensional Rugged Landscape 
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f : ℝn → ℝ, x ↦ f(x), n = 5

f : Rn ! R, x 7! f(x), n = 5

�  (component of � )xi x
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In any case, the objective function must be highly regular

What Makes an Optimization Problem Difficult?
• non-linear, non-quadratic

on linear and quadratic functions   
specialized search policies are available

• non-convexity

• dimensionality (size of search space) and non-separability
dimension considerably larger than three with  

 dependencies between the variables 

• multimodality

• ruggedness
high frequency modality, non-smooth, discontinuous

• ill-conditioning
varying sensitivities,  

worst case: non-smooth concave level sets
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Flexible Muscle-Based Locomotion for Bipedal Creatures 
T. Geijtenbeek, M van de Panne, F van der Stappen 

https://youtu.be/pgaEE27nsQw

https://youtu.be/pgaEE27nsQw
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Landscape of Continuous Search Methods

 13

Gradient-based (Taylor, local)

• Conjugate gradient methods [Fletcher & Reeves 1964]

• Quasi-Newton methods (BFGS) [Broyden et al 1970]

Derivative-free optimization (DFO)

• Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

• Simplex downhill [Nelder & Mead 1965]

• Pattern search [Hooke & Jeeves 1961, Audet & Dennis 2006]

Stochastic (randomized) search methods

• Evolutionary algorithms (broader sense, continuous domain)

– Differential Evolution [Storn & Price 1997]

– Particle Swarm Optimization [Kennedy & Eberhart 1995]

– Evolution Strategies [Rechenberg 1965, Hansen & Ostermeier 2001]

• Simulated annealing [Kirkpatrick et al 1983]

• Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]
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Basic Approach: Gradient Descent
The gradient is the local direction of the  
maximal f increase

e1

e2

f(x) = const

⚐

−∇f(x)
⚐⚐⚐

ℝ2

tangent 
space

here 
we 
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Basic Approach: Gradient Descent
The gradient is the local direction of the  
maximal f increase

e1

e2

f(x) = const

⚐

−∇f(x)
⚐⚐⚐

ℝ2

tangent 
space

optimal 
gradient step length

here 
we 
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Basic Approach: Gradient Descent
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x ← x − σ∇f(x)

= x + σ
n

∑
i=1

wiei

small test step

e1

e2

The gradient is the local direction of the  
maximal f increase

⚐

−∇f(x)
⚐⚐⚐

ℝ2

∇f(x) = −
n

∑
i=1

wiei −wi = limδ→0
f(x + δei) − f(x)

δ
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Basic Approach: Gradient Descent
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x ← x − σ∇f(x)

= x + σ
n

∑
i=1

wiei

small test step
partial derivative �

∂f
∂xi

(x)

e1

e2

The gradient is the local direction of the  
maximal f increase

⚐

−∇f(x)
⚐⚐⚐

ℝ2

∇f(x) = −
n

∑
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wiei −wi = limδ→0
f(x + δei) − f(x)

δ
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Basic Approach: Gradient Descent
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∇f(x) ≈ −
n

∑
i=1

wiei −wi = limδ→0
f(x + δei) − f(x)

δ

x ← x − σ∇f(x)

≈ x + σ
n

∑
i=1

wiei

small test step

e1

e2

The gradient is the local direction of the  
maximal f increase

⚐

−∇f(x)
⚐⚐⚐

ℝ2

X
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Basic Approach: Approximated Gradient Descent
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y1

y2

y3

⚐

−∇f(x)
⚐⚐⚐

ℝ2

We modify the gradient equation…

∇f(x) ≈ −
m

∑
i=1

wiyi −wi = limδ→0
f(x + δyi) − f(x)

δX

x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi
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x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi

yi ∼ 𝒩(0,I)

small test step

y1

y2

y3

⚐

−∇f(x)
⚐⚐⚐

ℝ2

We modify the gradient equation…

Evolutionary Gradient Search (EGS) [Salmon 1998, Arnold & Salomon 2007]
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∇f(x) ≈ −
n

∑
i=1

wiei −wi ∝ ranki( f(x + δyi)) −
m + 1

2

x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi

small test step

yi ∼ 𝒩(0,I)

y1

y2

y3

Rank-Based Approximated Gradient Descent

⚐

−∇f(x)
⚐⚐⚐

ℝ2

Using ranks introduces invariance to order-preserving 
� -transformations.f

Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997]



Nikolaus Hansen, Inria, IP Paris                                                                                                                                                                                                                                     From Gradient-Based to Evolutionary Optimization 22

∇f(x) ≈ −
n

∑
i=1

wiei −wi =
ln(ranki( f(x + δyi))) − ln m + 1

2
1
2 ∑m

j=1 ln( j)

x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi

yi ∼ 𝒩(0,I)

y1

y2

y3

small test step

Rank-Based Approximated Gradient Descent

⚐

−∇f(x)
⚐⚐⚐

ℝ2

Using ranks introduces invariance to order-preserving 
� -transformations.f

Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997, Hansen & Ostermeier 2001]
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Invariance from Rank-Based Weights

Three functions belonging to the same equivalence class

 23

f = h f = g1 ¶ h f = g2 ¶ h

A rank-based search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make
• observations meaningful as a rigorous notion of generalization

• algorithms predictable and/or ”robust”



Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f convex quadratic, separable with varying condition number ↵
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BFGS (Broyden et al 1970)
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DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
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2001)

f (x) = g(xT
Hx) with

H diagonal
g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
increasing function (for all other)

SP1 = average number of objective function evaluations14 to reach the target function
value of g�1(10�9)

14Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 70 / 81 24
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f convex quadratic, non-separable (rotated) with varying condition number ↵
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f non-convex, non-separable (rotated) with varying condition number ↵
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From Gradient Search to Evolution Strategies

 27

Gradient Search Evolution Strategy

Test Steps: unit vectors random vectors

dimension n any number > 1

small large

Weights: partial derivatives fixed rank-based

Realized Step Length: line search step-size control (non-
trivial)
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems
Curvature of level sets
Consider the convex-quadratic function
f (x) = 1

2(x�x
⇤)T

H(x�x
⇤) = 1

2
P

i hi,i (xi�x⇤i )
2+ 1

2
P

i 6=j hi,j (xi�x⇤i )(xj�x⇤j )
H is Hessian matrix of f and symmetric positive definite

gradient direction �f 0(x)T

Newton direction �H
�1f 0(x)T

Ill-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 1010

are not unusual in real world problems.

If H ⇡ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H

�1) is necessary.
Anne Auger & Nikolaus Hansen CMA-ES July, 2014 11 / 81 28

In any case, the objective function must be highly regular

What Makes an Optimization Problem Difficult?

From Gradient-Based to 
Evolutionary Optimization

From Gradient-Based to Evolutionary Optimization

• non-linear, non-quadratic
on linear and quadratic functions   

specialized search policies are available

• non-convexity

• dimensionality (size of search space) and non-separability
dimension considerably larger than three with  

 dependencies between the variables 

• multimodality

• ruggedness
high frequency modality, non-smooth, discontinuous

• ill-conditioning
varying sensitivities,  

worst case: non-smooth concave level sets
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∇f(x) ≈ −
n

∑
i=1

wiei −wi =
ln(ranki( f(x + δyi))) − ln m + 1

2
1
2 ∑m

j=1 ln( j)

 30

x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi

yi ∼ 𝒩(0,

y1

y2

y3

Rank-Based Approximated Gradient Descent

⚐

−∇f(x)
⚐⚐⚐

ℝ2

yi ∼ 𝒩(0,I)

Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997]

Using ranks introduces invariance to order-preserving 
� -transformations.f
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∇f(x) ≈ −
n

∑
i=1

wiei −wi =
ln(ranki( f(x + δyi))) − ln m + 1

2
1
2 ∑m

j=1 ln( j)
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x ← x − σ∇f(x)

≈ x + σ
m

∑
i=1

wiyi

yi ∼ 𝒩(0,C)

y1

y2

y3

Rank-Based Approximated Gradient Descent

⚐

−∇f(x)
⚐⚐⚐

ℝ2

variable metric, updated to 
estimate �H−1

yi ∼ 𝒩(0,

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen & Ostermeier 2001, Hansen et al 2003]
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𝖫𝖾𝗍 m ∈ ℝn, σ > 0, C = In, y0 = 0
xk ∼ 𝒩(m , σ2C) = m + σ 𝒩(0,C) ∈ ℝn, k = 1…λ

yk =
xpermuteλ(k) − m

σ
sorted by fitness yk ∼ 𝒩(0,C)

m ← m + cm σ
μ

∑
k=1

wkyk, cm ≈
μ

∑
k=1

wk ≈ 1, μ ≈ λ /2

y0 ← (1 − cc) y0 + cc(2 − cc)μw

μ

∑
k=1

wkyk μw =
(∑μ

i=1 wk)2

∑μ
i=1 wk

2

C ← C + cμ

λ

∑
k=0

wk(yky⊤
k − C), cμ ≈ λ /n2,

λ

∑
k=0

wk ≈ 0

σ ← σ × exp (…)

CMA-ES

 32

population size
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David Ha (2017). A Visual Guide to Evolution Strategies,  
 http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
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CMA-ES

• Strive to sample the optimal (multi-variate) Gaussian distribution at any 
given iteration

• “optimal” mean (best estimate of the optimum)
given the available information

• optimal covariance matrix �
given the available information

• optimal step-size �
given the covariance matrix

• A natural gradient update of mean and covariance matrix
provides a theoretical framework/justification [JMLR 18(18), 2017] 

�  

• Convergence speed is almost independent of the number of samples 
(not � ) 

property of multi-recombinative Evolution Strategies

C

σ
1. Sample distribution P (x|◊t) æ x1, . . . , x⁄ œ X
2. Evaluate samples on f æ f(x1), . . . , f(x⁄)
3. Update parameters

◊t+1 = ◊t + ÷
1

Z(⁄)

⁄ÿ

k=1

!
⁄/2 ≠ rank(f(xk))

"ÂÒ◊ ln p(xk|◊)
--
◊=◊t

≫ n

 34

Covariance Matrix Adaptation Evolution Strategy
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Practical Advice

 35
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Approaching an Unknown Optimization Problem
• Objective formulation

for example �  and �  have the same optimal  
 (minimal) solution but may be very differently “optimizable”

• Problem/variable encoding
for example log scale vs linear scale vs quadratic transformation

• Create section plots (�  vs �  on a line)
one-dimensional grid search is cheap, may reveal ill-conditioning or multi-modality

• Try to locally improve a given (good) solution

• Start local search from different initial solutions
Ending up always in different solutions? Or always in the same?

• Apply “global search” setting

• see also http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#practical

∑i x2
i ∑i |xi |

f(x) x

 36

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#practical


Nikolaus Hansen, Inria, IP Paris                                                                                                                                                                                                                                     From Gradient-Based to Evolutionary Optimization 37



Nikolaus Hansen, Inria, IP Paris                                                                                                                                                                                                                                     From Gradient-Based to Evolutionary Optimization 38

Python Example in Jupyter-Lab

f(x) =
n

∑
i=1

αix2
i
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f(x) =
n

∑
i=1

αix2
i
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On Object-Oriented Programming of Optimizers [Collette et al 2010]

A Transparent Interface
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Thank You
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