From Gradient-Based to Evolutionary Optimization

Nikolaus Hansen

CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris

Inria

- Why is optimization difficult?
- From gradient descent to evolution strategy
- From first order (gradient descent) to second order (variable metric): CMA-ES
- Practical advice and code examples

Outline

... feel free to ask questions...

minimize an objective function

- in theory: convergence to the global optimum
- in practice: find a good solution *iteratively* as quickly as possible

Objective

 $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$

Objective: Important Scenarios

minimize an objective function

- evaluating f is expensive and/or dominates the costs
- search space dimension n is large
- we can (inexpensively) evaluated the gradient of f
- we can parallelize the evaluations of f

 $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$

hence quick means small number of f evaluations

 $f(x) \in \mathbb{R}$, while $\nabla f(x) \in \mathbb{R}^n$

Objective: Important Scenarios

minimize an objective function

- evaluating f is expensive and/or dominates the costs
- search space dimension n is large
- we can (inexpensively) evaluated the gradient of f
- we can parallelize the evaluations of f

 $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$

hence quick means small number of f evaluations

 $f(x) \in \mathbb{R}$, while $\nabla f(x) \in \mathbb{R}^n$

minimize an objective function

What Makes an Optimization Problem Difficult?

Nikolaus Hansen, Inria, IP Paris

Objective

 $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$

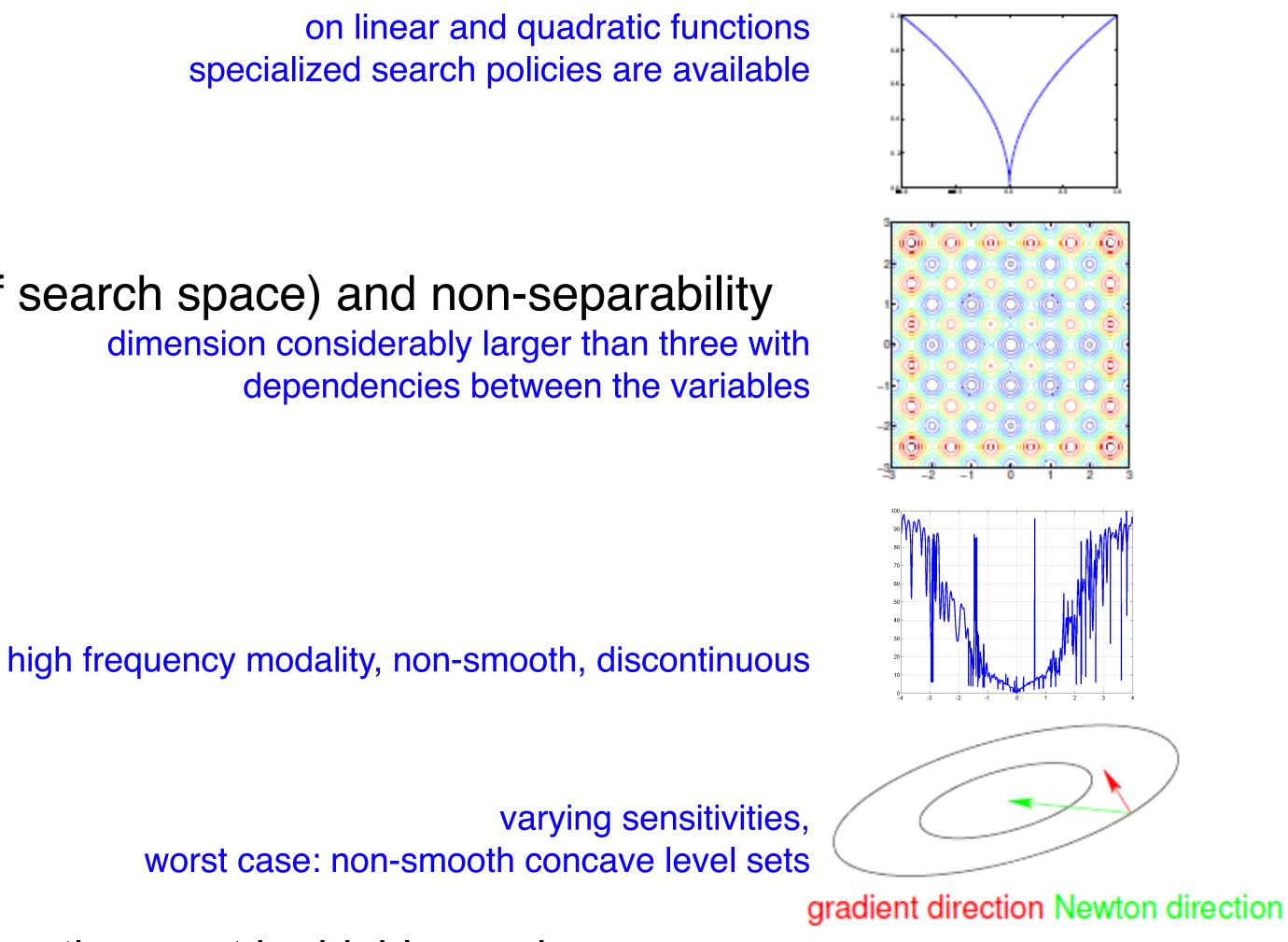
What Makes an Optimization Problem Difficult?

• non-linear, non-quadratic

- non-convexity
- dimensionality (size of search space) and non-separability \bullet
- multimodality lacksquare
- ruggedness

ill-conditioning

In any case, the objective function must be highly regular



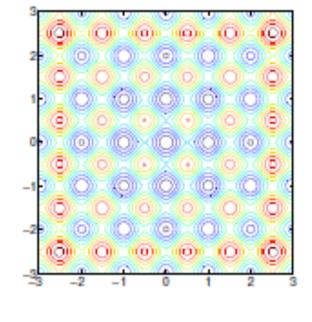
dimensionality: On Separable Functions

- Separable functions: for all $x \in \mathbb{R}^n$, for all i,
 - $\arg \min f(x)$ is independent of x X_i
- Additively decomposable functions: $f(x) = \sum g_i(x_i)$ i=1

can be solved with *n* one-dimensional optimizations

Nikolaus Hansen, Inria, IP Paris

$$x_i), \quad x = (x_1, \dots, x_n)$$



are separable

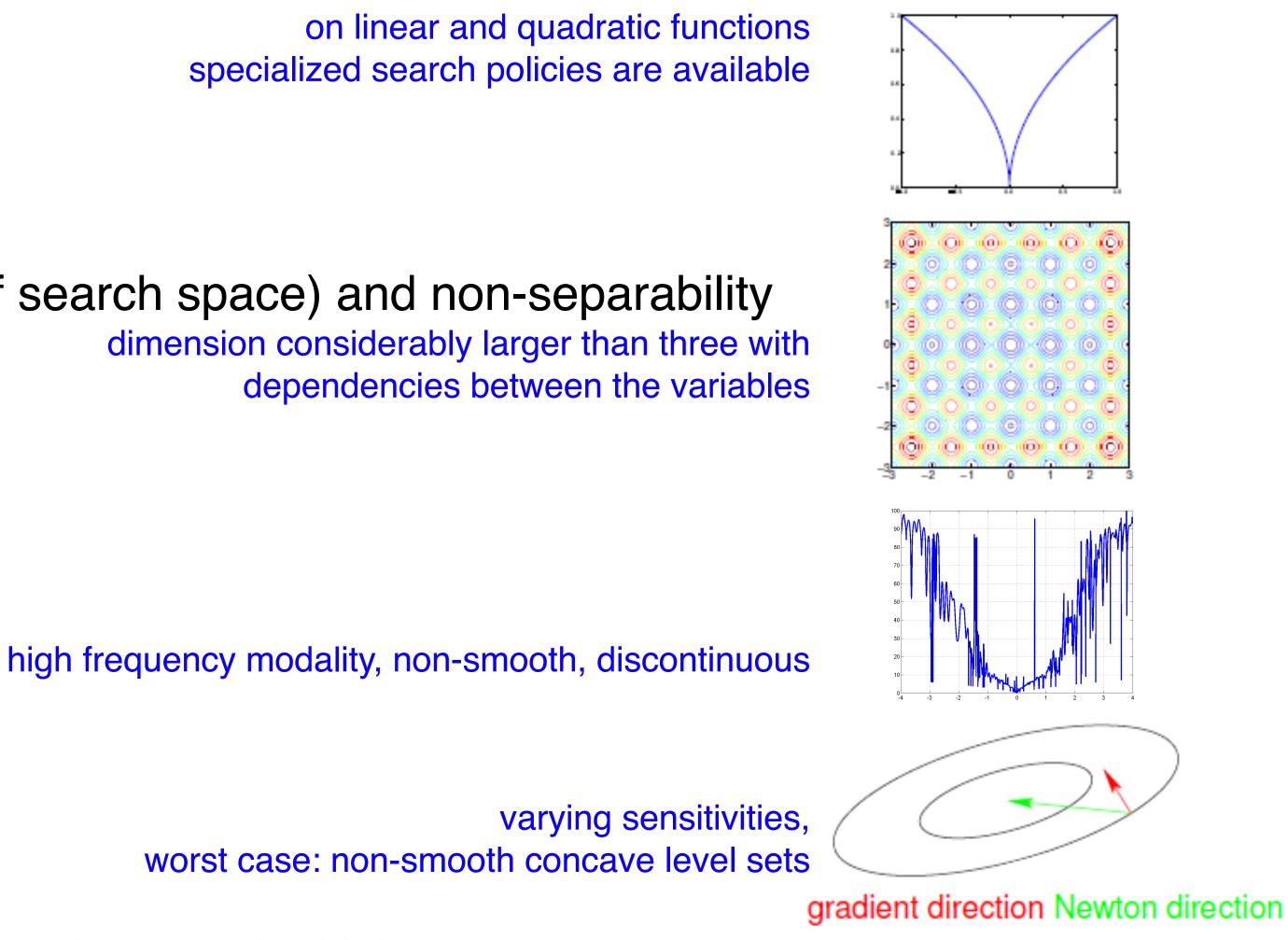
What Makes an Optimization Problem Difficult?

• non-linear, non-quadratic

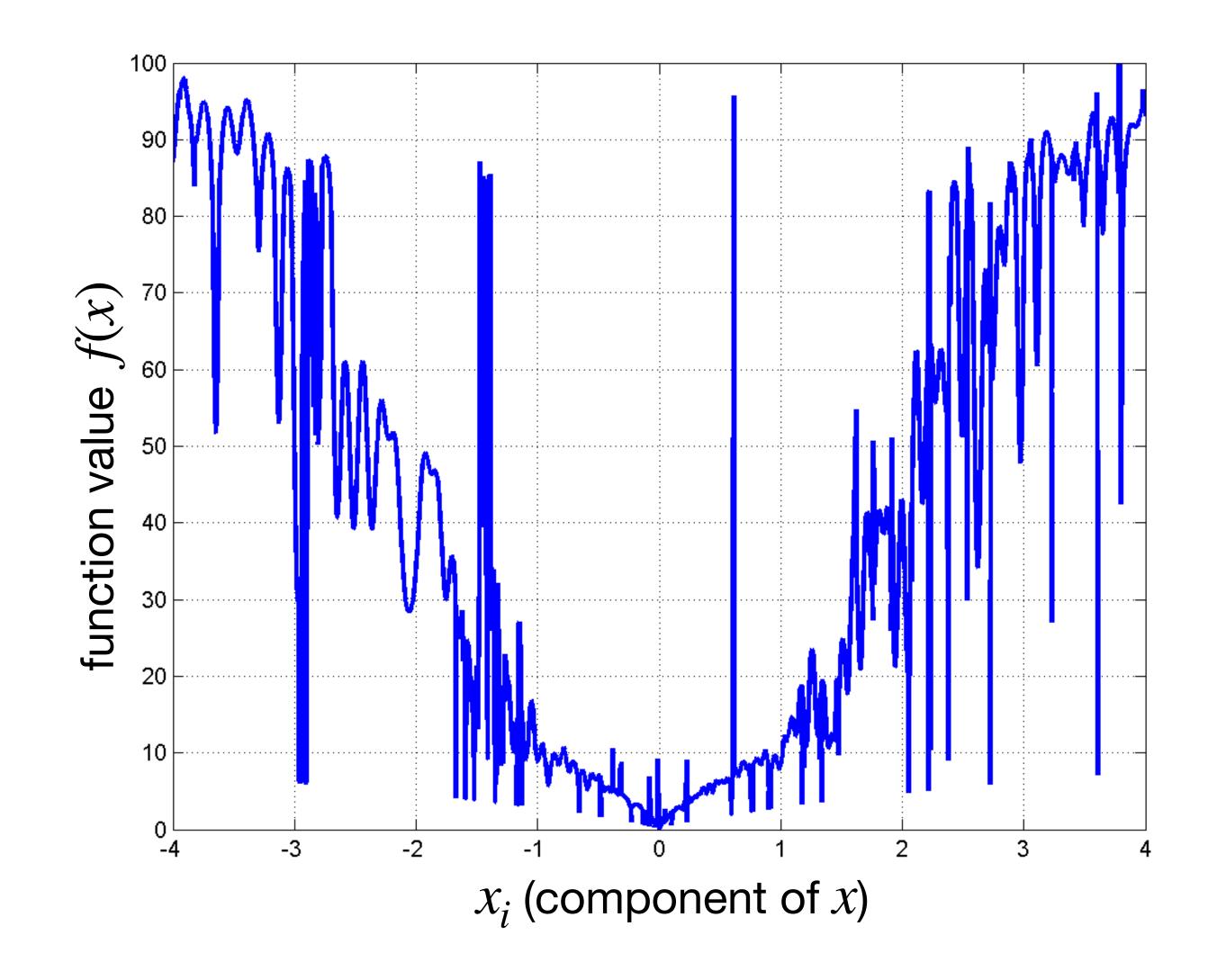
- non-convexity
- dimensionality (size of search space) and non-separability \bullet
- multimodality lacksquare
- ruggedness

ill-conditioning

In any case, the objective function must be highly regular



Section Through a 5-Dimensional Rugged Landscape



 $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x), n = 5$

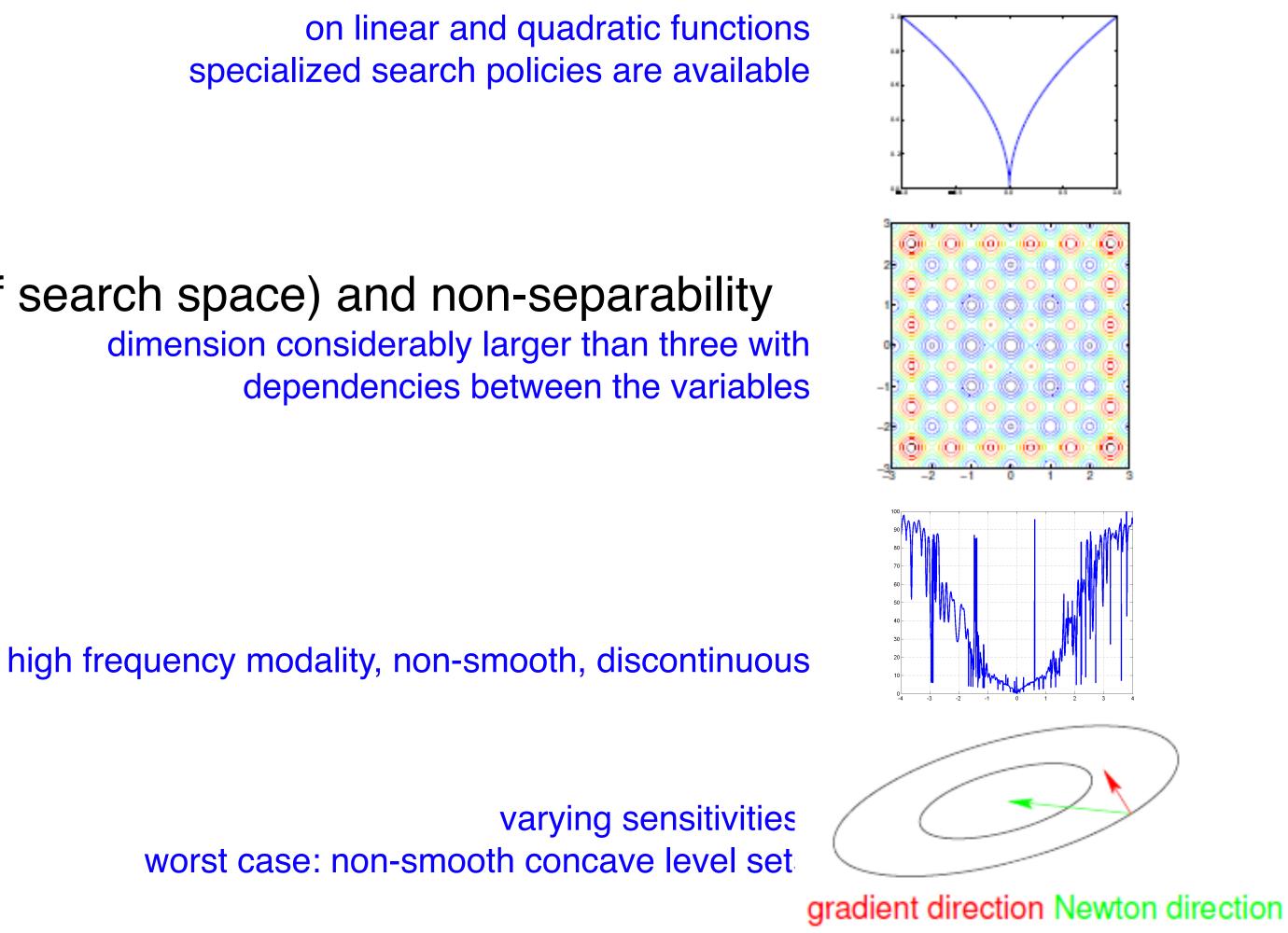
What Makes an Optimization Problem Difficult?

• non-linear, non-quadratic

- non-convexity
- dimensionality (size of search space) and non-separability \bullet
- multimodality \bullet
- ruggedness

ill-conditioning

In any case, the objective function must be highly regular



Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek Michiel van de Panne Frank van der Stappen

Flexible Muscle-Based Locomotion for Bipedal Creatures T. Geijtenbeek, M van de Panne, F van der Stappen <u>https://youtu.be/pgaEE27nsQw</u>

Landscape of Continuous Search Methods

Gradient-based (Taylor, local)

- Conjugate gradient methods [Fletcher & Reeves 1964]
- Quasi-Newton methods (BFGS) [Broyden et al 1970]

Derivative-free optimization (DFO)

- Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
- Simplex downhill [Nelder & Mead 1965]
- Pattern search [Hooke & Jeeves 1961, Audet & Dennis 2006]

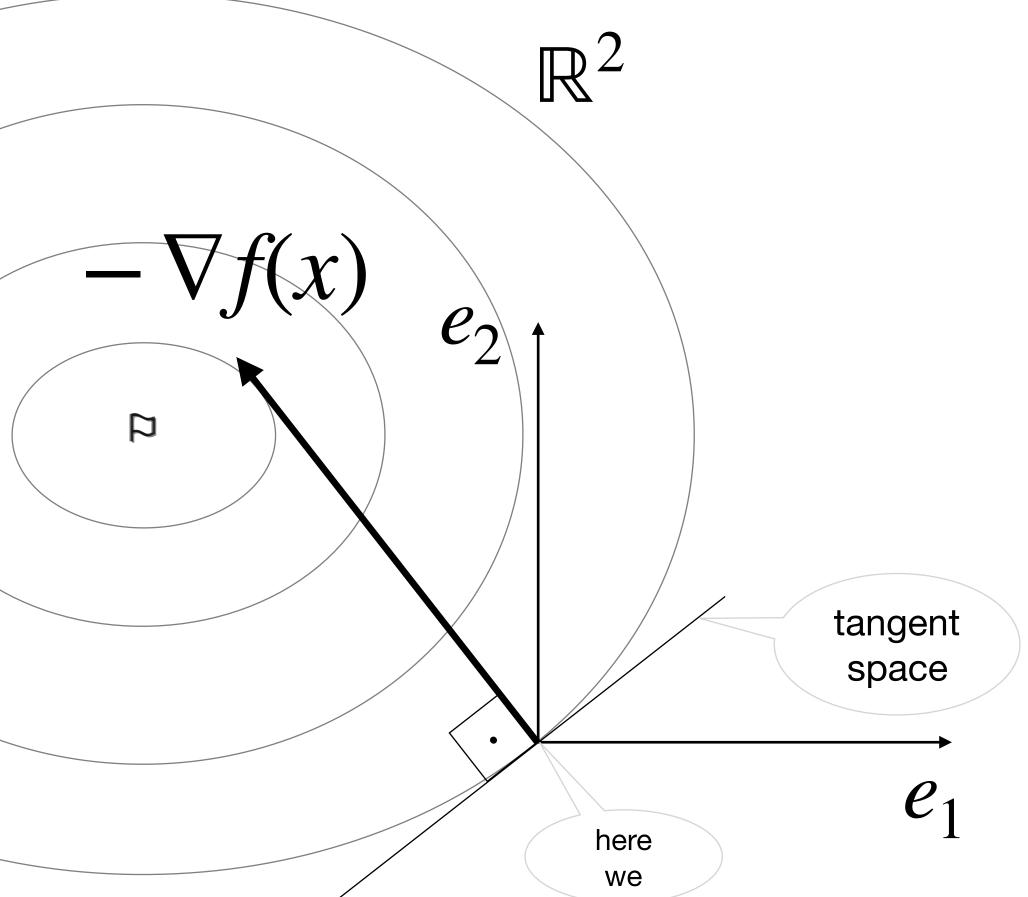
Stochastic (randomized) search methods

- Evolutionary algorithms (broader sense, continuous domain)
 - Differential Evolution [Storn & Price 1997]
 - Particle Swarm Optimization [Kennedy & Eberhart 1995]
 - Evolution Strategies [Rechenberg 1965, Hansen & Ostermeier 2001]
- Simulated annealing [Kirkpatrick et al 1983]
- Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]

Basic Approach: Gradient Descent The *gradient* is the local direction of the

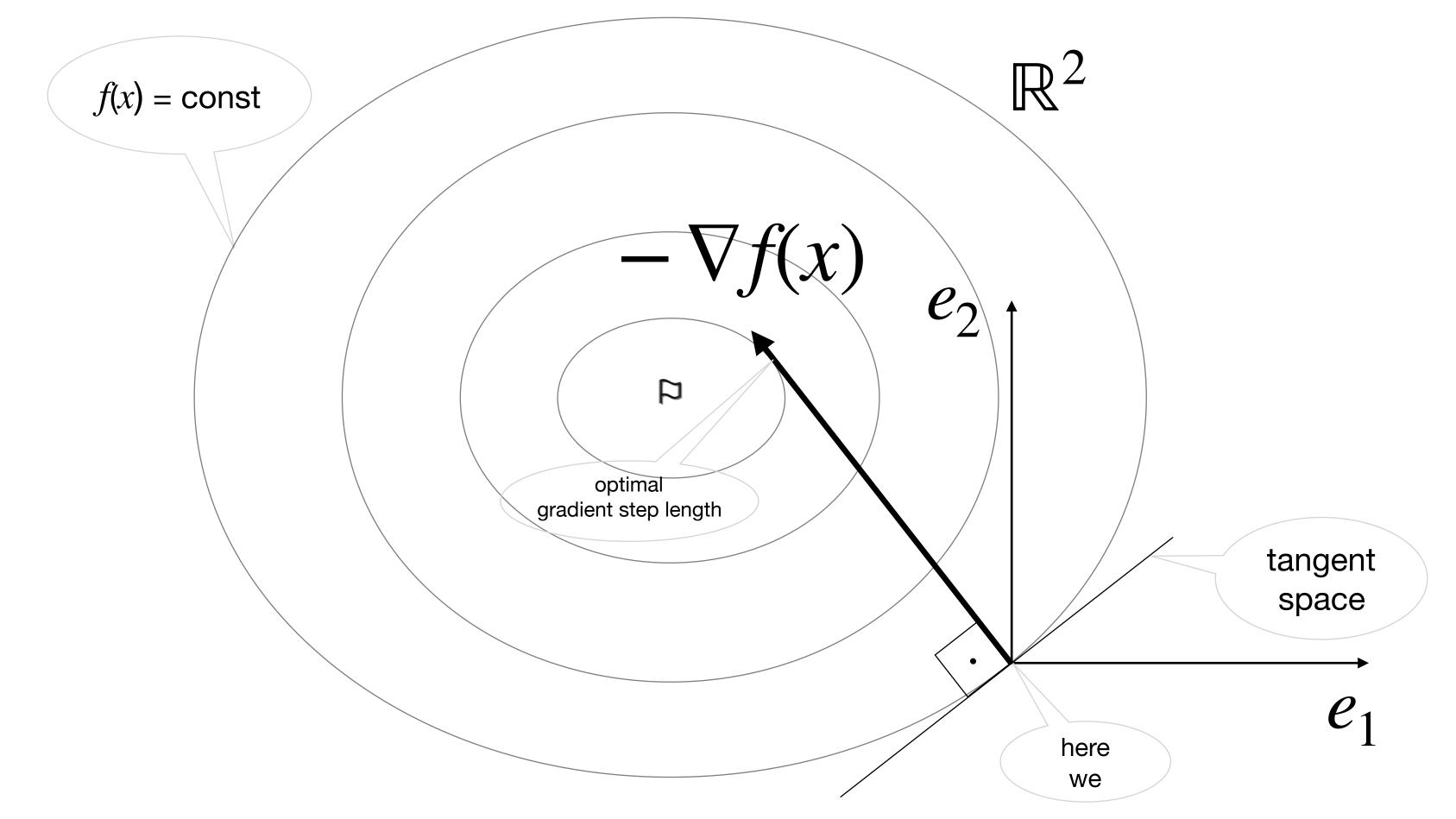
maximal f increase

f(x)	= const	



Basic Approach: Gradient Descent The *gradient* is the local direction of the

maximal f increase



The gradient is the local direction of the maximal f increase

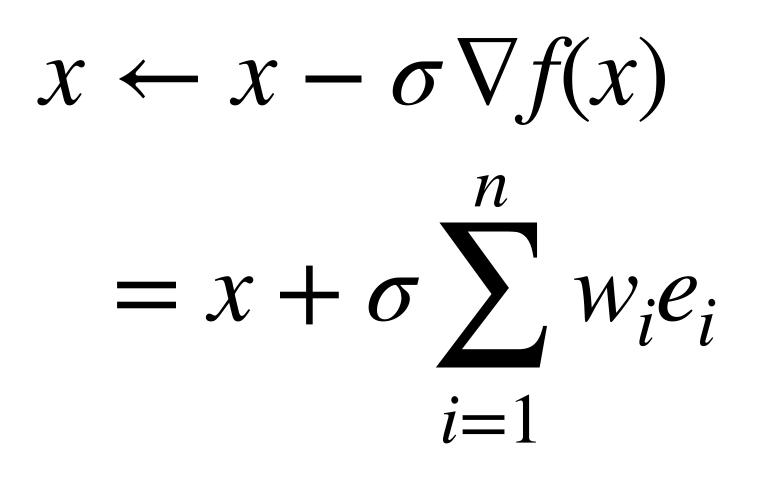
$$\nabla f(x) = -\sum_{i=1}^{n} w_i e_i \qquad -w_i =$$

$$x \leftarrow x - \sigma \nabla f(x)$$

= $x + \sigma \sum_{i=1}^{n} w_i e_i$

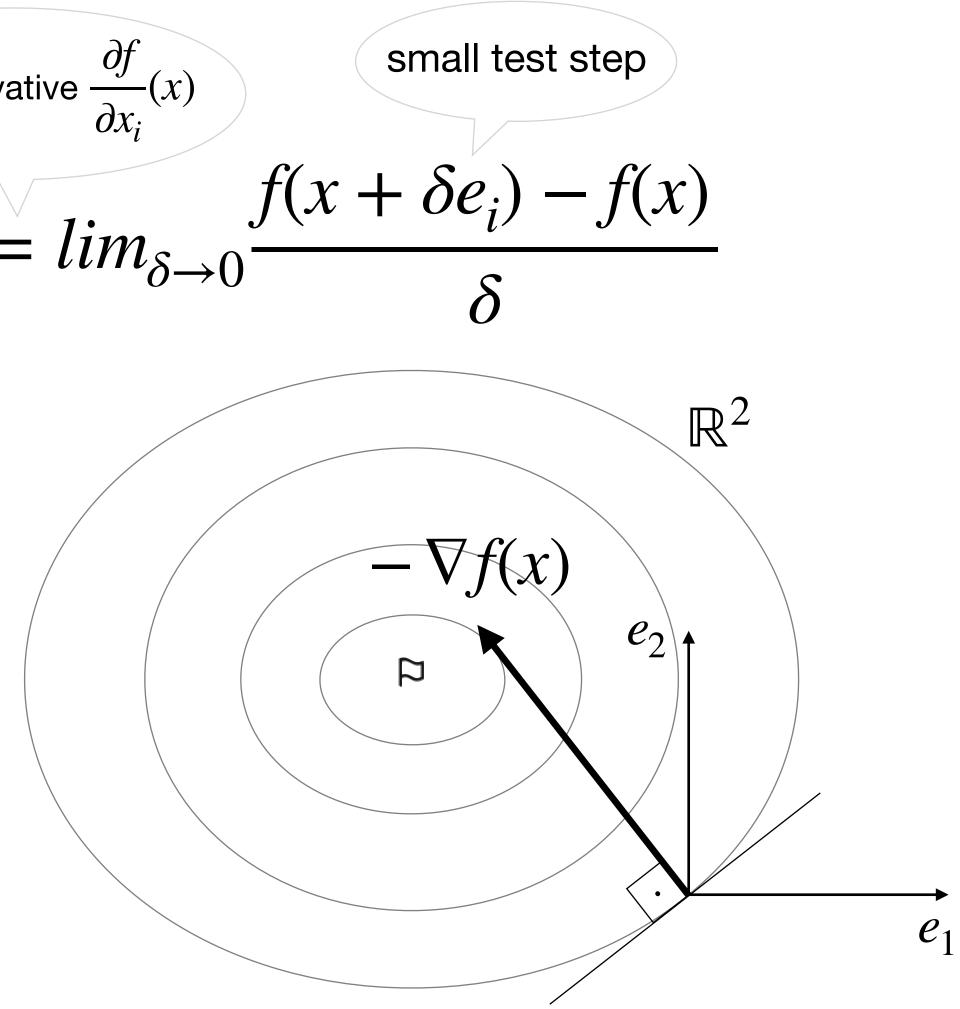
Basic Approach: Gradient Descent small test step $= \lim_{\delta \to 0} \frac{f(x + \delta e_i) - f(x)}{\delta}$ \mathbb{R}^2 $\nabla f(x)$ e_2 \square e_1

Basic Approach: Gradient Descent The *gradient* is the local direction of the maximal f increase partial derivative $\frac{\partial f}{\partial x_i}(x)$ small test step $\nabla f(x) = -\sum_{i=1}^{n} w_i e_i \qquad -w_i = \lim_{\delta \to 0} \frac{f(x + \delta e_i) - f(x)}{\delta}$



i=1

Nikolaus Hansen, Inria, IP Paris



The gradient is the local direction of the maximal f increase

$$\nabla f(x) \approx -\sum_{i=1}^{n} w_i e_i - w_i =$$

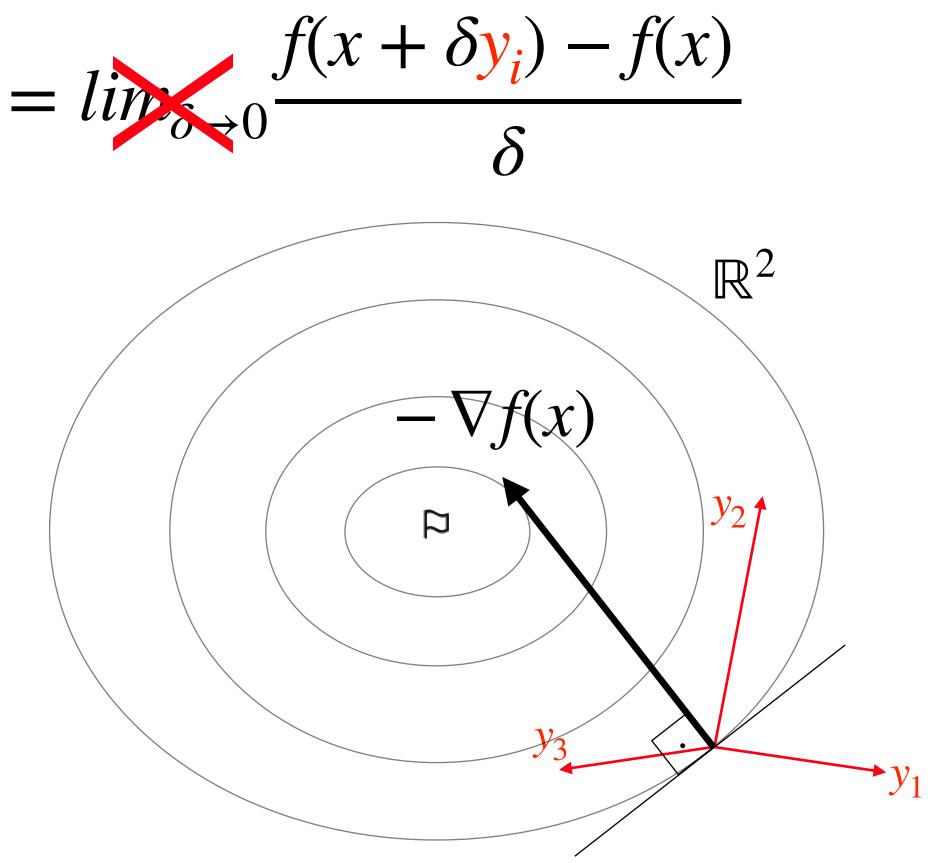
$$x \leftarrow x - \sigma \nabla f(x)$$
$$\approx x + \sigma \sum_{i=1}^{n} w_i e_i$$

Basic Approach: Gradient Descent small test step $= \lim_{\delta \to 0} \frac{f(x + \delta e_i) - f(x)}{\delta}$ \mathbb{R}^2 $\nabla f(x)$ e_2 \square e_1

Basic Approach: Approximated Gradient Descent We modify the gradient equation...

$$\nabla f(x) \approx -\sum_{i=1}^{m} w_i y_i - w_i =$$

$$x \leftarrow x - \sigma \nabla f(x)$$
$$\approx x + \sigma \sum_{i=1}^{m} w_i y_i$$



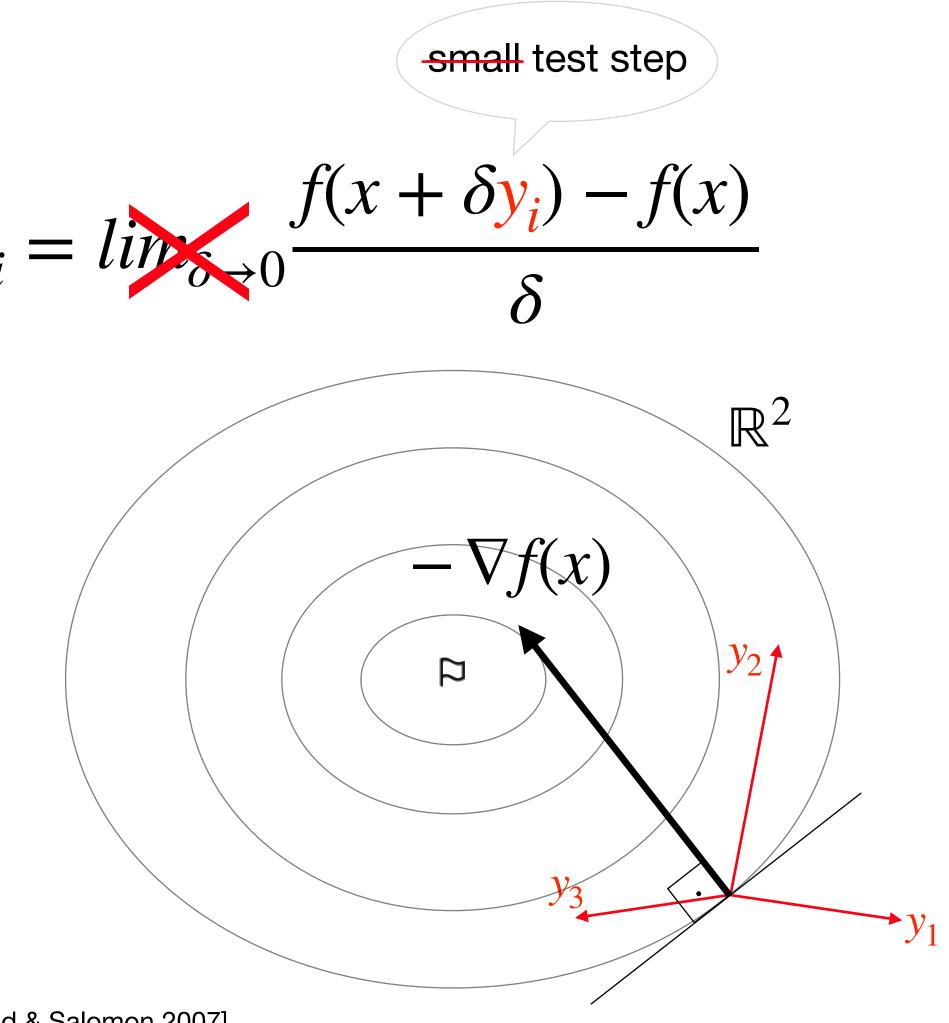
Basic Approach: Approximated Gradient Descent We modify the gradient equation...

$$y_i \sim \mathcal{N}(0,I) \qquad -w_i$$

$$x \leftarrow x - \sigma \nabla f(x)$$
$$\approx x + \sigma \sum_{i=1}^{m} w_i y_i$$

Evolutionary Gradient Search (EGS) [Salmon 1998, Arnold & Salomon 2007]

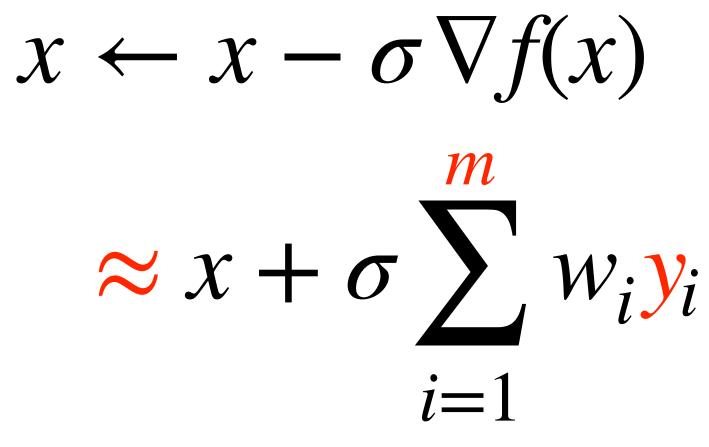
Nikolaus Hansen, Inria, IP Paris



Rank-Based Approximated Gradient Descent

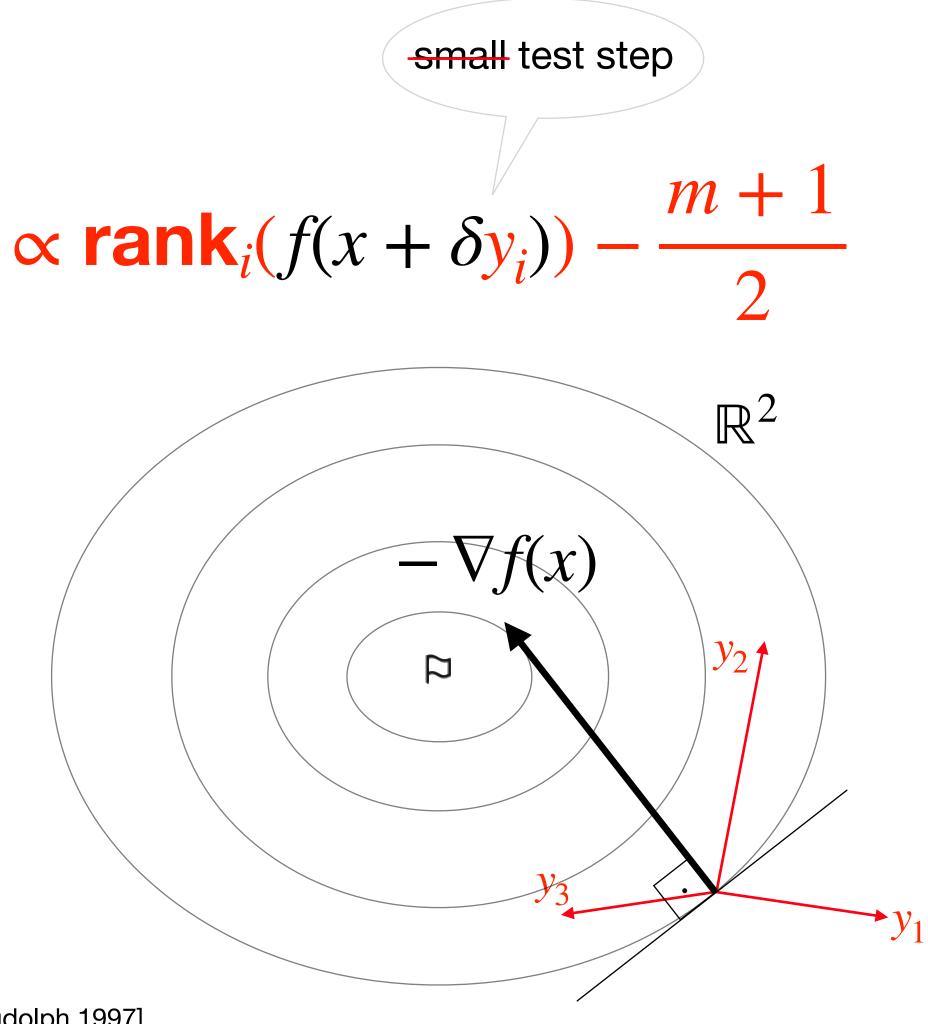
f-transformations.

$$y_i \sim \mathcal{N}(0,I) - w_i$$



Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997]

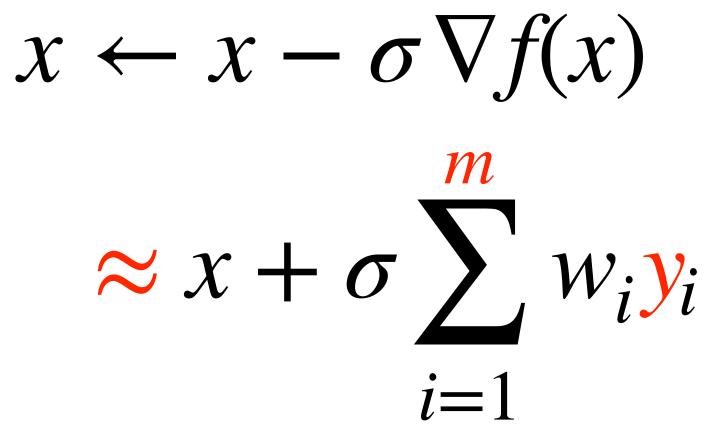
Using ranks introduces invariance to order-preserving



Rank-Based Approximated Gradient Descent

f-transformations.

$$y_i \sim \mathcal{N}(0,I) \qquad -w_i$$

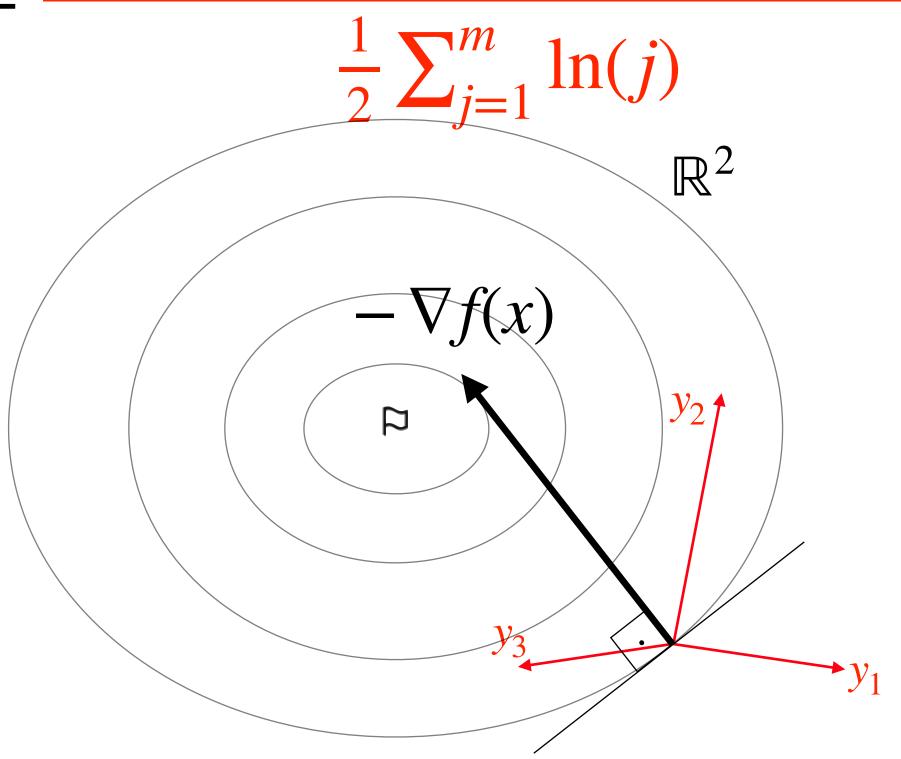


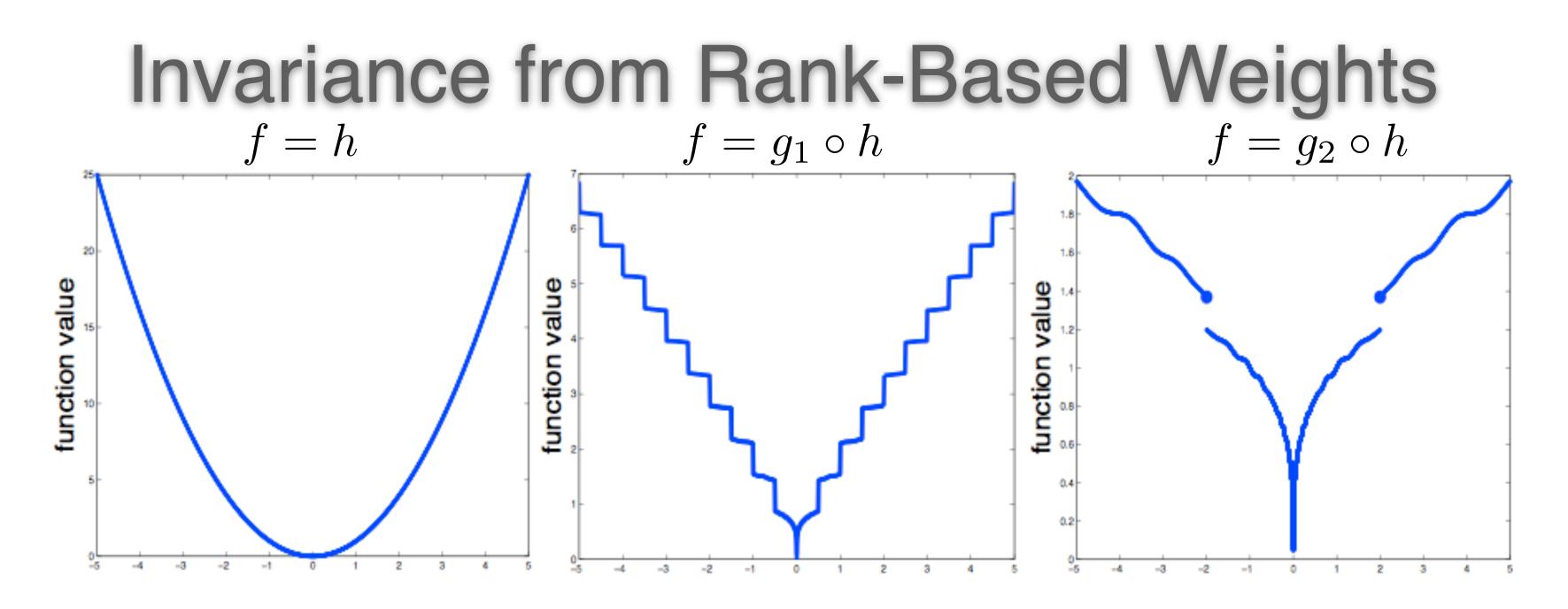
Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997, Hansen & Ostermeier 2001]

Using ranks introduces invariance to order-preserving

-small test step

 $\ln\left(\operatorname{rank}_{i}(f(x+\delta y_{i}))\right) - \ln\frac{m+1}{2}$





Three functions belonging to the same equivalence class

A rank-based search algorithm is invariant under the

Invariances make

- observations meaningful
- algorithms predictable and/or "robust"

Nikolaus Hansen, Inria, IP Paris

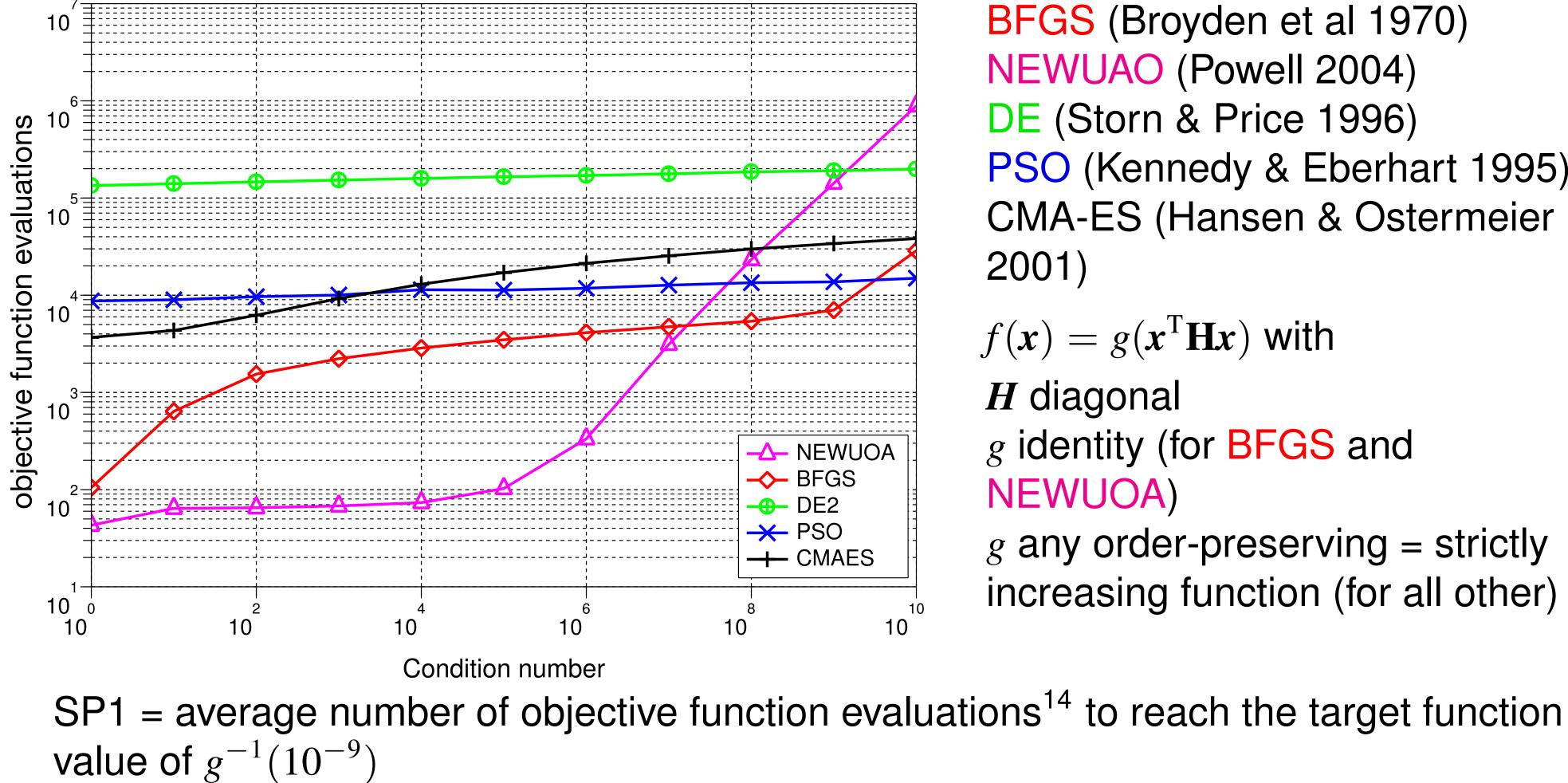
- transformation with any order preserving (strictly increasing) q.

as a rigorous notion of generalization

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number α

Ellipsoid dimension 20, 21 trials, tolerance 1e–09, eval max 1e+07



¹⁴Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA 🔌 📃 🕨 🛓 🦿 🖉 🔷 🔍 24

```
BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)
```

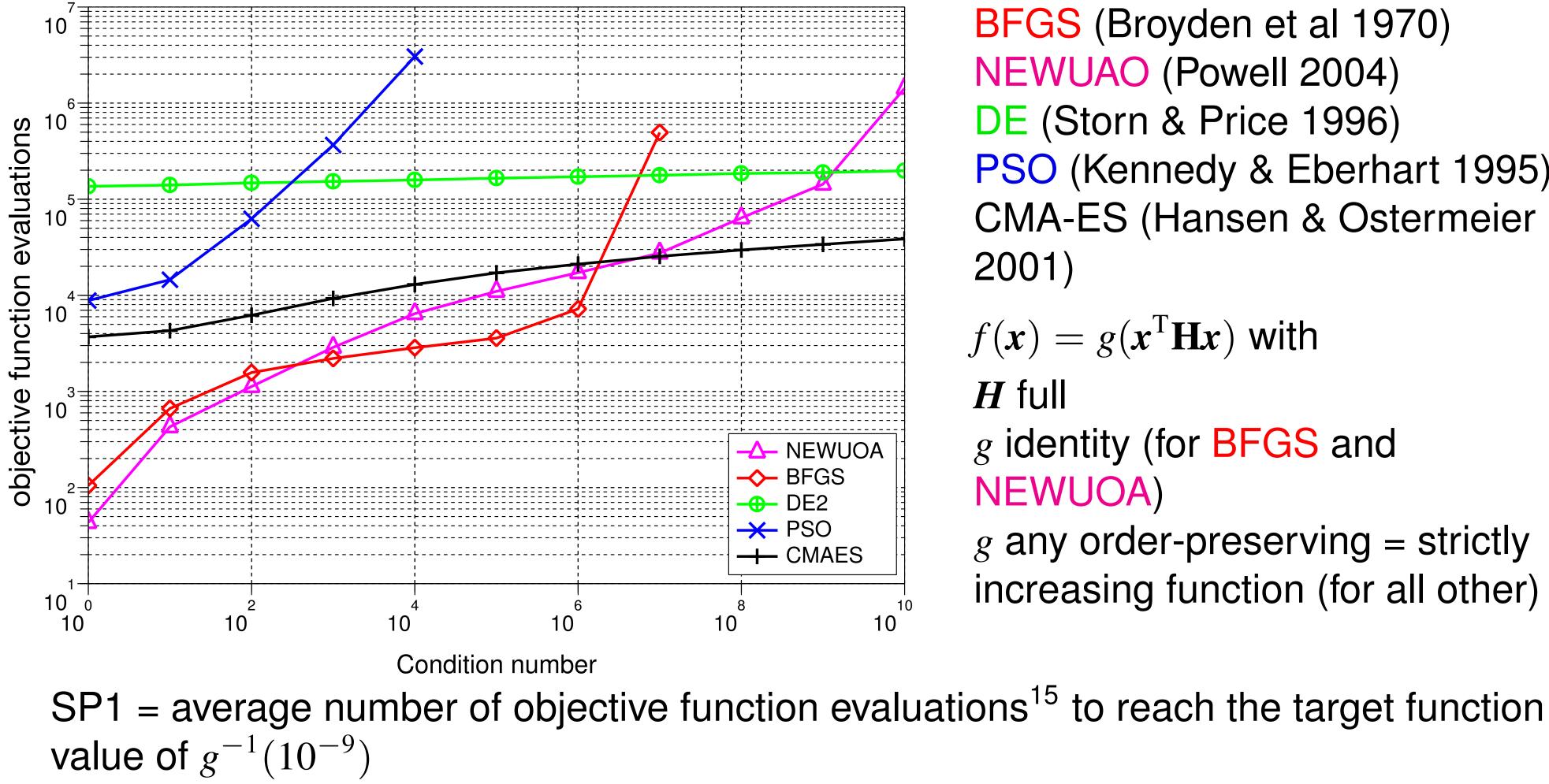
$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H diagonal g identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

Comparison to BFGS, NEWUOA, PSO and DE f convex quadratic, non-separable (rotated) with varying condition number α

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e–09, eval max 1e+07



¹⁵Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA 🔹 🕨 🛓 🖉 🖉 🖓 🔍 🖓

```
BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)
```

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

```
H full
```

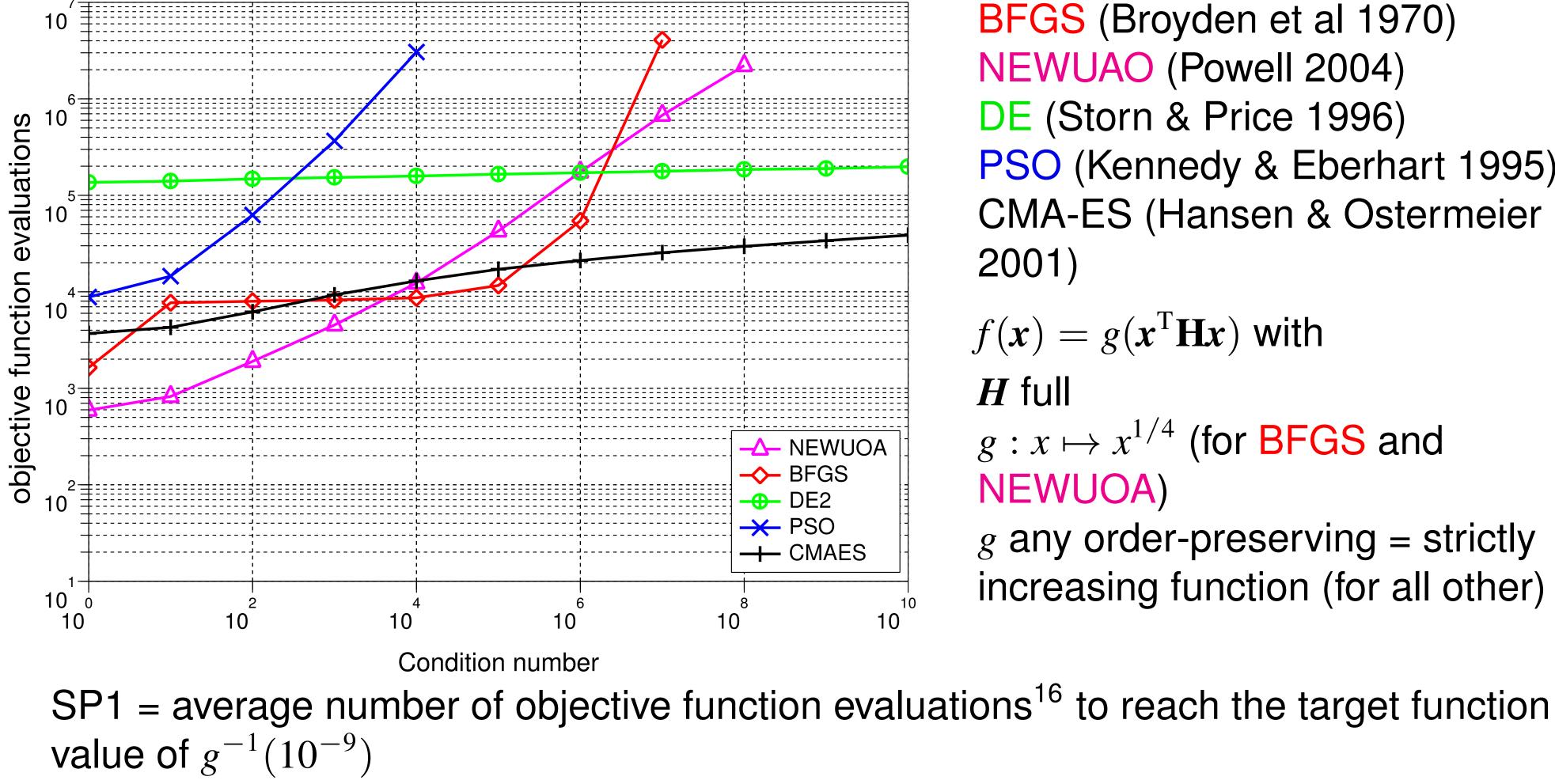
g identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number α

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07



16 Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA 🛛 🚊 🕨 🛓 🥠 🔍 🔿

BFGS (Broyden et al 1970) **NEWUAO** (Powell 2004) DE (Storn & Price 1996) PSO (Kennedy & Eberhart 1995) CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H full

$$g: x \mapsto x^{1/4}$$
 (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

From Gradient Search to Evolution Strategies

	Gradie
Test Steps:	unit
	dime
	S
Weights:	partial
Realized Step Length:	line

ent Search	Evolution Strategy
t vectors	random vectors
nension <i>n</i>	any number > 1
small	large
Iderivatives	fixed rank-based
e search	step-size control (non- trivial)

What Makes an Optimization Problem Difficult?

• non-linear, non-quadratic

- non-convexity
- dimensionality (size of search space) and non-separability \bullet
- multimodality \bullet
- ruggedness

high frequency modality, non-smooth, discontinuous

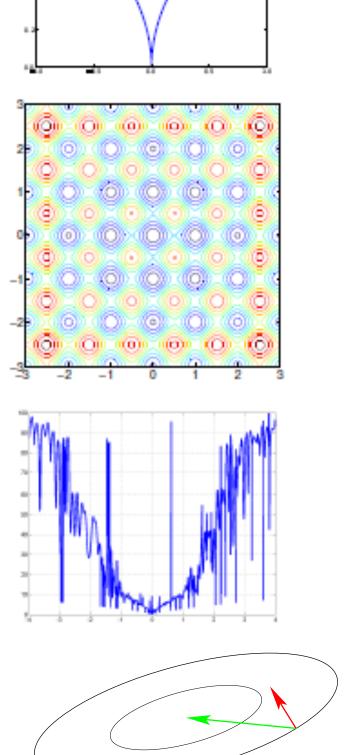
ill-conditioning

varying sensitivities, worst case: non-smooth concave level sets

In any case, the objective function must be highly regular

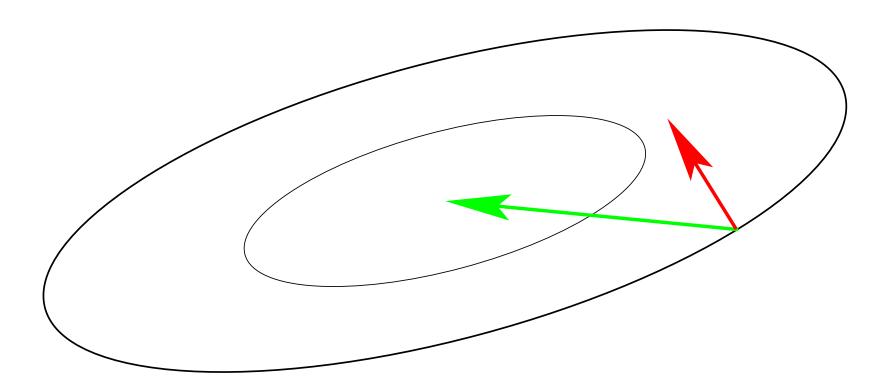
on linear and quadratic functions specialized search policies are available

dimension considerably larger than three with dependencies between the variables From Gradient-Based to **Evolutionary Optimization**



Ill-Conditioned Problems

Curvature of level sets Consider the convex-quadratic function $f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} f(\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*)$



Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation) of H^{-1}) is necessary.

$$_{i}h_{i,i}(x_{i}-x_{i}^{*})^{2}+\frac{1}{2}\sum_{i\neq j}h_{i,j}(x_{i}-x_{i}^{*})(x_{j}-x_{j}^{*})$$

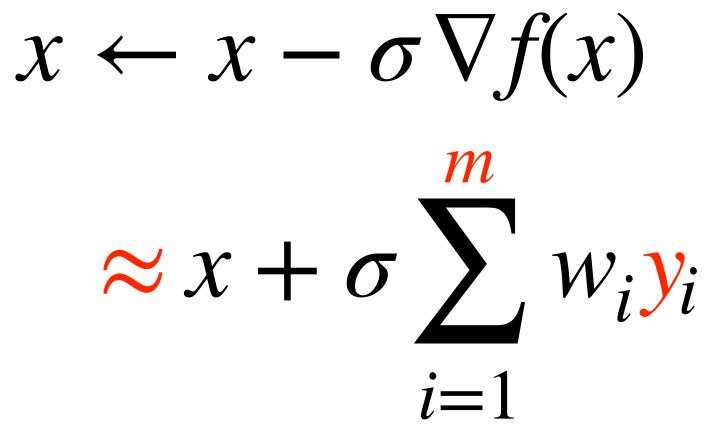
H is Hessian matrix of *f* and symmetric positive definite

gradient direction $-f'(\mathbf{x})^{\mathrm{T}}$ Newton direction $-H^{-1}f'(x)^{T}$

Rank-Based Approximated Gradient Descent

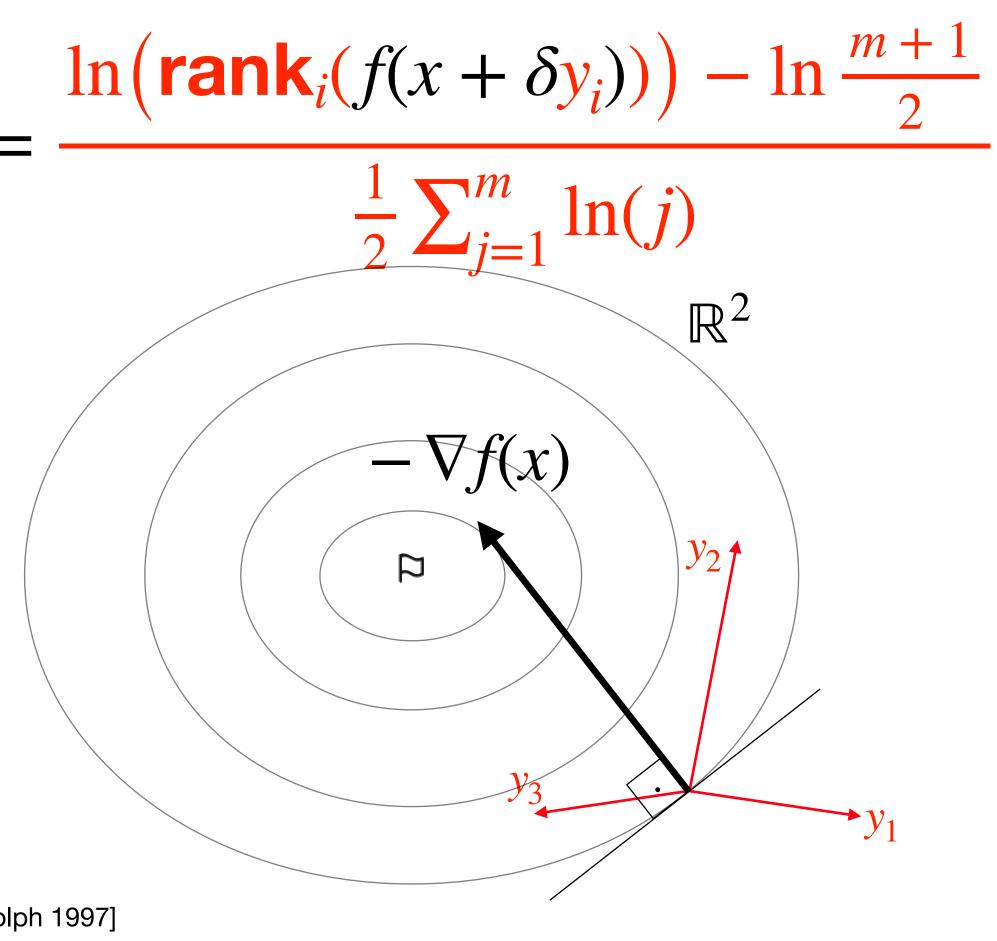
f-transformations.

$$y_i \sim \mathcal{N}(0,I) \qquad -w_i$$



Evolution Strategy (ES) [Rechenberg 1973, Schwefel 1981, Rudolph 1997]

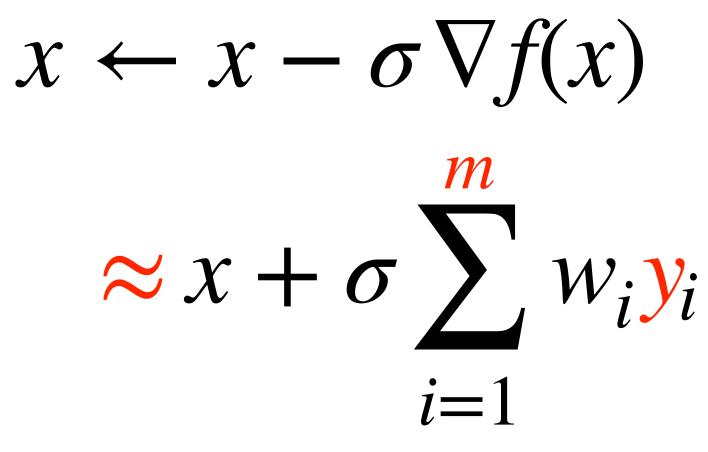
Using ranks introduces invariance to order-preserving



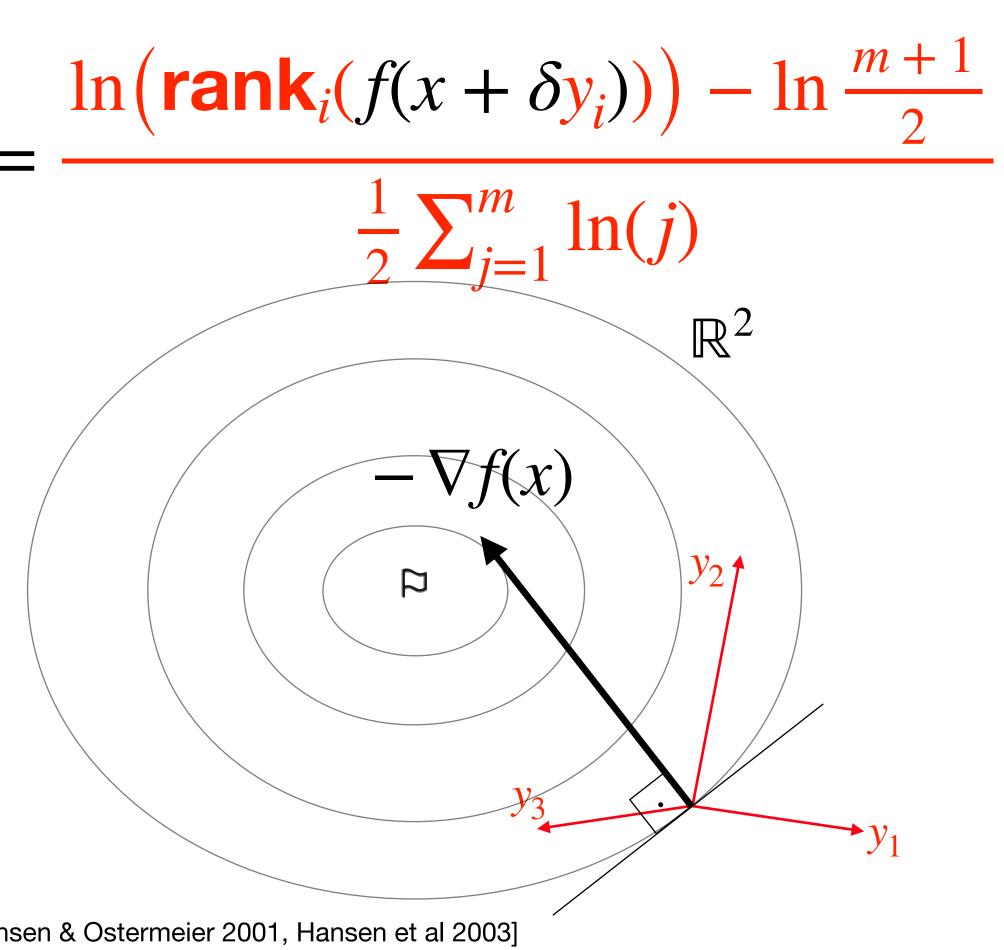
Rank-Based Approximated Gradient Descent

variable metric, updated to estimate H^{-1}

 $y_i \sim \mathcal{N}(0,C) \quad -w_i =$



Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen & Ostermeier 2001, Hansen et al 2003]



Let $m \in \mathbb{R}^n$, $\sigma > 0$, $C = \mathbf{I}_n$, $y_0 = \mathbf{0}$ $y_k = \frac{x_{\text{permute}_{\lambda}(k)} - m}{\sigma} \quad \text{sorted by fitness} \quad y_k \sim \mathcal{N}(0, C)$

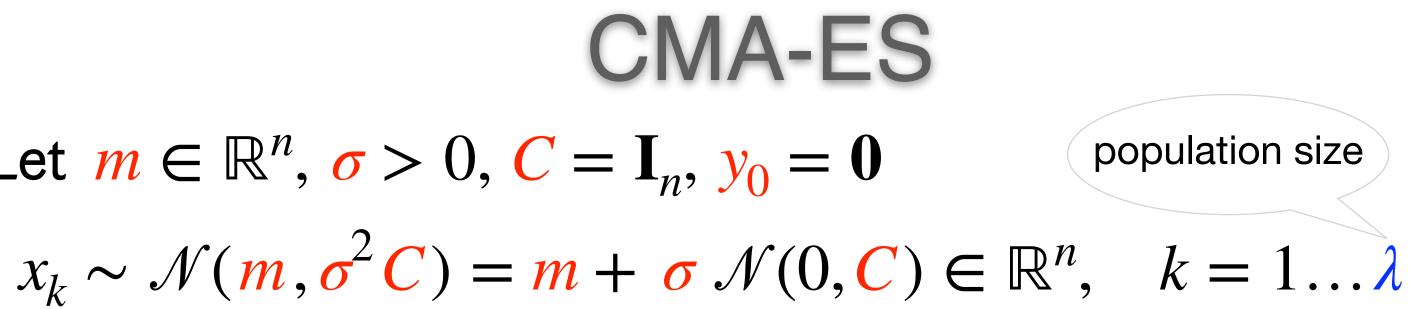
$$m \leftarrow m + c_m \sigma \sum_{k=1}^{\mu} w_k y_k, \quad c_m \approx \sum_{k=1}^{\mu} w_k \approx 1, \ \mu \approx \lambda/2$$
$$y_0 \leftarrow (1 - c_c) y_0 + \sqrt{c_c (2 - c_c) \mu_w} \sum_{k=1}^{\mu} w_k y_k \quad \mu_w = \frac{(\sum_{i=1}^{\mu} w_k)^2}{\sum_{i=1}^{\mu} w_k^2}$$
$$C \leftarrow C + \frac{c_\mu}{\sum_{k=0}^{\lambda}} w_k (y_k y_k^\top - C), \quad c_\mu \approx \lambda/n^2, \ \sum_{k=0}^{\lambda} w_k \approx 0$$

$$m \leftarrow m + c_m \sigma \sum_{k=1}^{\mu} w_k y_k, \quad c_m \approx \sum_{k=1}^{\mu} w_k \approx 1, \ \mu \approx \lambda/2$$
$$y_0 \leftarrow (1 - c_c) y_0 + \sqrt{c_c (2 - c_c) \mu_w} \sum_{k=1}^{\mu} w_k y_k \quad \mu_w = \frac{(\sum_{i=1}^{\mu} w_k)^2}{\sum_{i=1}^{\mu} w_k^2}$$
$$C \leftarrow C + \frac{c_\mu}{c_\mu} \sum_{k=0}^{\lambda} w_k (y_k y_k^\top - C), \quad c_\mu \approx \lambda/n^2, \ \sum_{k=0}^{\lambda} w_k \approx 0$$

$$m \leftarrow m + c_m \sigma \sum_{k=1}^{\mu} w_k y_k, \quad c_m \approx \sum_{k=1}^{\mu} w_k \approx 1, \ \mu \approx \lambda/2$$
$$y_0 \leftarrow (1 - c_c) y_0 + \sqrt{c_c (2 - c_c) \mu_w} \sum_{k=1}^{\mu} w_k y_k \quad \mu_w = \frac{(\sum_{i=1}^{\mu} w_k)^2}{\sum_{i=1}^{\mu} w_k^2}$$
$$C \leftarrow C + c_\mu \sum_{k=0}^{\lambda} w_k (y_k y_k^{\mathsf{T}} - C), \quad c_\mu \approx \lambda/n^2, \ \sum_{k=0}^{\lambda} w_k \approx 0$$

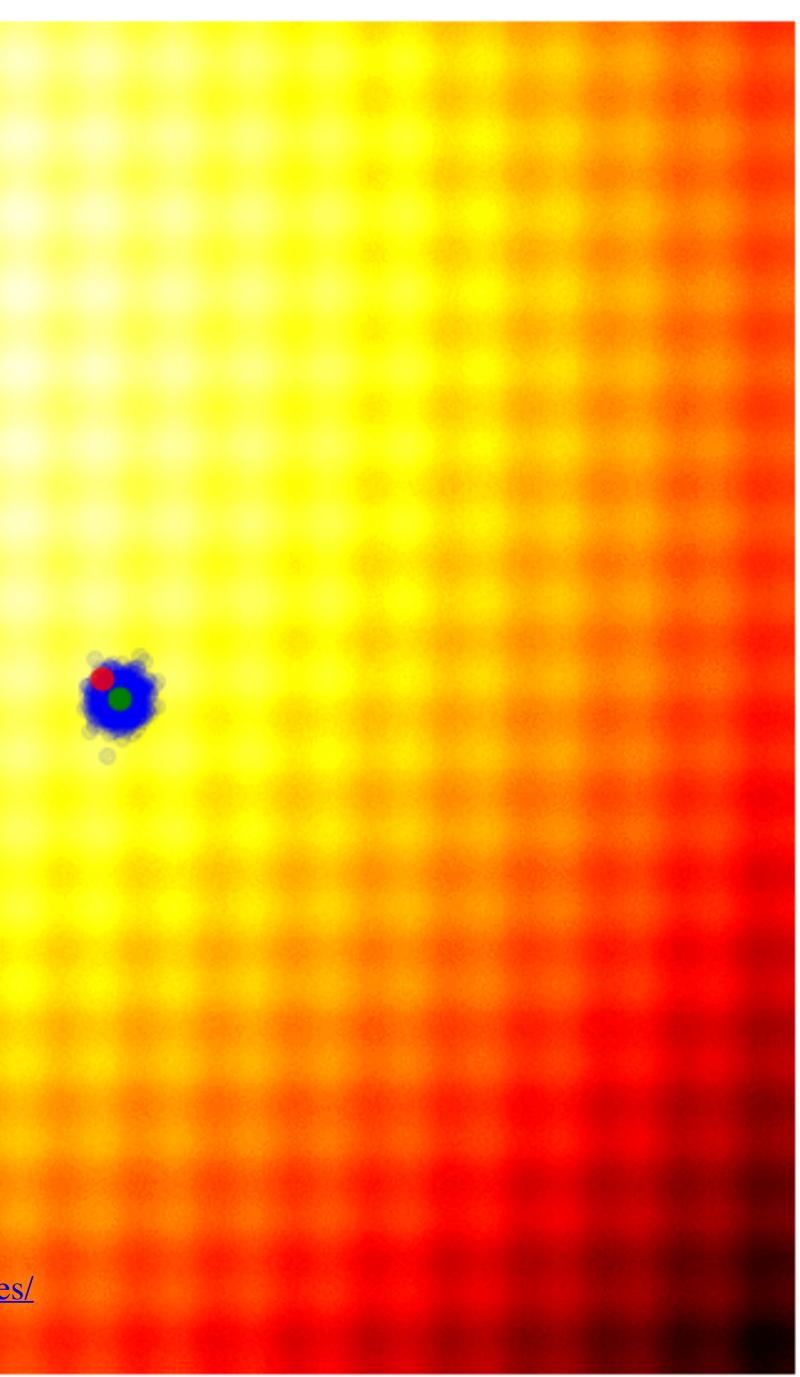
 $\sigma \leftarrow \sigma \times \exp(\ldots)$

Nikolaus Hansen, Inria, Institute Polytechnique de Paris (IP Paris)



David Ha (2017). A Visual Guide to Evolution Strategies, http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Nikolaus Hansen, Inria, IP Paris



volutionary Optimization

CMA-ES Covariance Matrix Adaptation Evolution Strategy

- given iteration
 - *"optimal" mean (best estimate of the optimum)*
 - optimal covariance matrix C
 - optimal step-size σ
- A natural gradient update of mean and covariance matrix

provides a theoretical framework/justification [JMLR 18(18), 2017] $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \frac{1}{Z(\lambda)} \sum_{t=1}^{n} \left(\lambda/2 - \operatorname{rank}(f(x_k)) \right) \widetilde{\nabla}_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_t}$

(not $\gg n$)

Strive to sample the optimal (multi-variate) Gaussian distribution at any

given the available information

given the available information

given the covariance matrix

Convergence speed is almost independent of the number of samples

property of multi-recombinative Evolution Strategies

Practical Advice

Nikolaus Hansen, Inria, IP Paris

Approaching an Unknown Optimization Problem

Objective formulation ullet

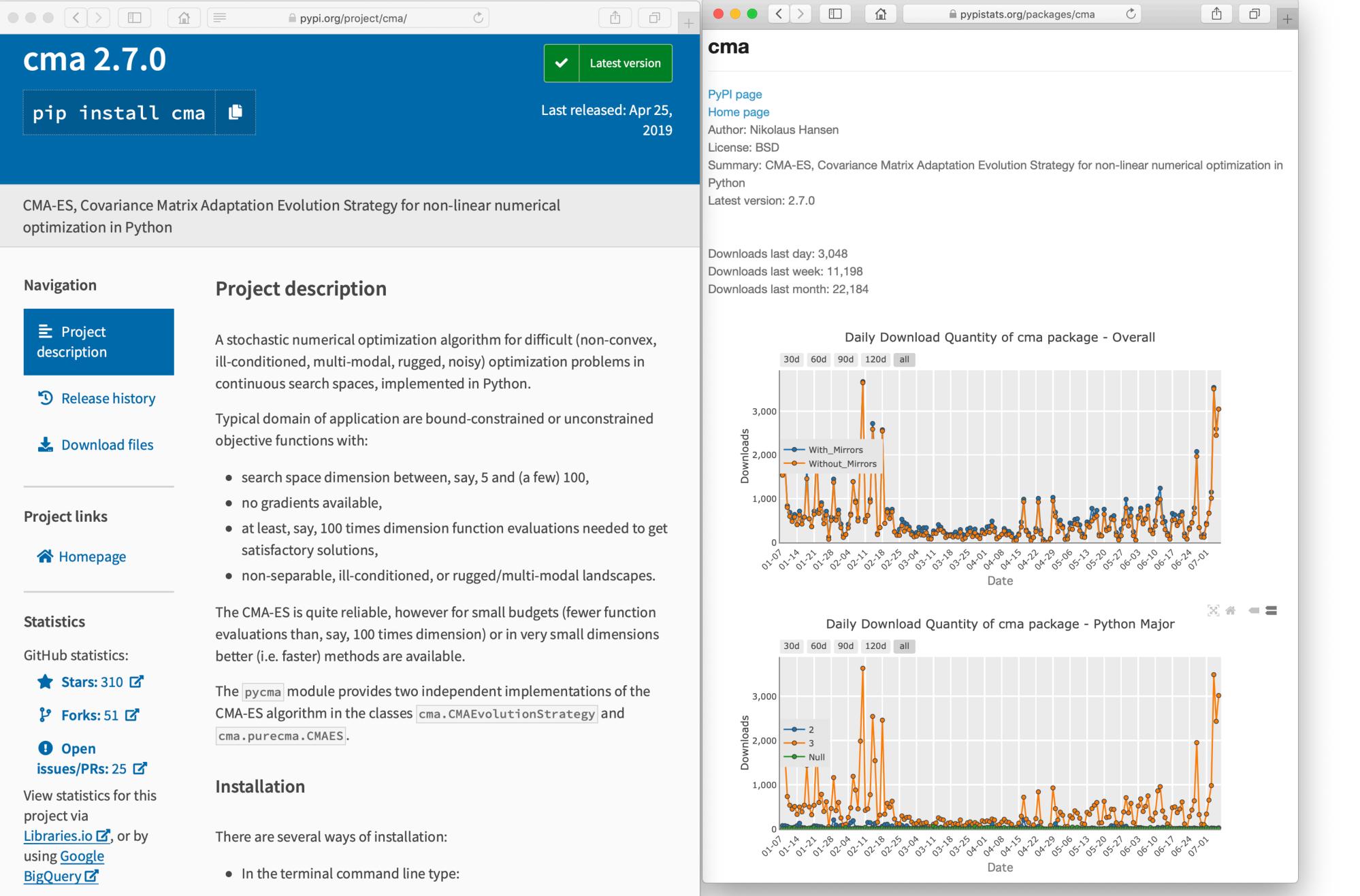
- Problem/variable encoding
- Create section plots (f(x) vs x on a line)
- Try to locally improve a given (good) solution
- Start local search from different initial solutions
- Apply "global search" setting •
- See also http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#practical •

for example $\sum_{i} x_i^2$ and $\sum_{i} |x_i|$ have the same optimal (minimal) solution but may be very differently "optimizable"

for example log scale vs linear scale vs quadratic transformation

one-dimensional grid search is cheap, may reveal ill-conditioning or multi-modality

Ending up always in different solutions? Or always in the same?



Python Example in Jupyter-Lab

1	<pre># download & install anaconda python</pre>
	<pre># optional: "conda create" in case a diffe</pre>
	<pre># shell cmd "pip install cma" to install a</pre>
	<pre># shell cmd "jupyter-notebook" or "jupyter</pre>
5	
	%pylab ipympl
	import cma

Populating the interactive namespace from numpy and matplotlib

1 x, es = cma.fmin2(cma.ff.elli, 11 * [1], 0.1) (5_w,11)-aCMA-ES (mu_w=3.4,w_1=42%) in dimension 11 (seed=822389, Tue Jul 9 16:35:30 2019 i=1 Iterat #Fevals function value axis ratio sigma min&max std t[m:s] 11 1.037523721813126e+06 1.0e+00 9.97e-02 22 9.633352873252528e+05 1.3e+00 9.77e-02 33 7.976836387974678e+05 1.3e+00 1.00e-01 3 100 1100 4.807072196140337e+01 1.5e+01 2.34e-02 200 2200 8.681869407386893e+00 1.1e+02 2.37e-02 300 3300 4.683795983800626e-01 5.1e+02 2.58e-02 2e-04 9e-02 0:00.3 4400 5.684285745919520e-07 1.1e+03 8.11e-05 400 500 5500 3.857152913051700e-13 9.8e+02 1.78e-07 518 5698 4.015035568039135e-14 9.8e+02 5.64e-08 7e-11 6e-08 0:00.5 termination on tolfun=1e-11 (Tue Jul 9 16:35:31 2019) final/bestever f-value = 2.491784e-14 2.491784e-14 incumbent solution: [-8.03092159e-08 2.46363535e-08 6.15113753e-09 2.77515423e-11 2.17672302e-09 1.15830669e-09 1.54068182e-09 -8.97542512e-11 ...] std deviations: [6.12538334e-08 3.23572912e-08 1.56460460e-08 8.59198717e-09 4.26818495e-09 2.25284147e-09 1.06453007e-09 5.47204032e-10 ...]

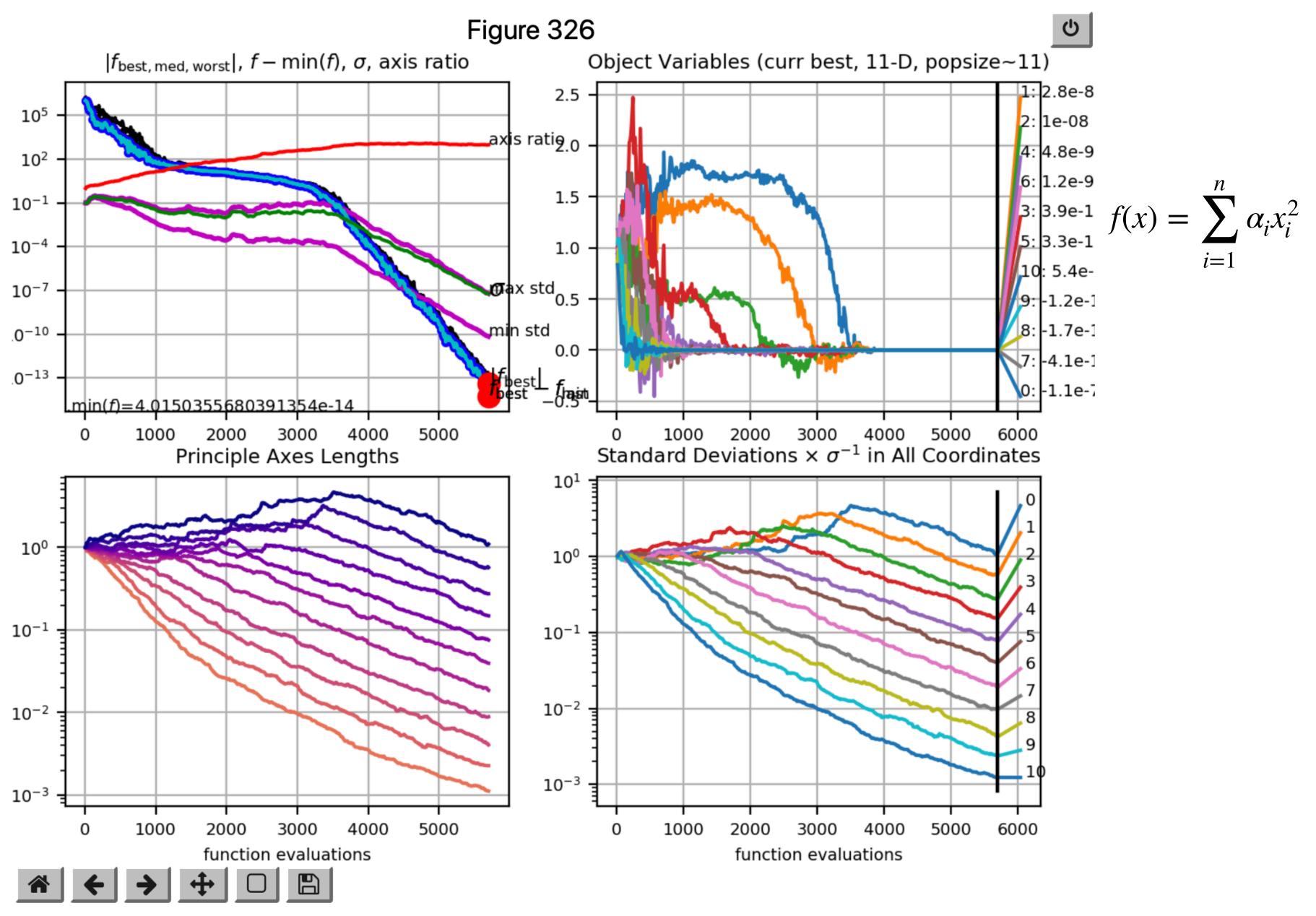
erent Python version is needed a CMA-ES module (or see github) r–lab"

 $f(x) = \sum_{i=1}^{N} \alpha_i x_i^2$

```
1e-01 1e-01 0:00.0
9e-02 1e-01 0:00.0
1e-01 1e-01 0:00.0
3e-03 3e-02 0:00.1
5e-04 5e-02 0:00.2
2e-07 2e-04 0:00.4
3e-10 2e-07 0:00.5
```


cma.plot()

1



<cma.logger.CMADataLogger at 0x7f90d09d0630>

Nikolaus Hansen, Inria, IP Paris

From Gradient-Based to Evolutionary Optimization

<cma.logger.CMADataLogger at 0x7f90d09d0630>

1 x, es = cma.fmin2(cma.ff.elli, 11 * [1], 1e-5)

(5_w,11)-aCMA-ES (mu_w=3.4,w_1=42%) in dimension 11 (seed=909918, Thu Jul 11 10:51:45 2019) Iterat #Fevals function value axis ratio sigma min&max std t[m:s] 11 1.335426651544717e+06 1.0e+00 9.41e-06 9e-06 9e-06 0:00.0 1 22 1.335403970874783e+06 1.2e+00 1.02e-05 1e-05 1e-05 0:00.0 2 33 1.335381895674725e+06 1.3e+00 1.13e-05 1e-05 1e-05 0:00.0 451 1.236413461768105e+06 3.4e+00 7.70e-03 6e-03 1e-02 0:00.1 41 termination on tolfacupx=1000.0 (Thu Jul 11 10:51:45 2019) final/bestever f-value = 1.239692e+06 1.236413e+06 incumbent solution: [1.01162517 0.99668741 0.98913604 1.01240495 0.99246088 0.98896483 0.9867979 0.98844654 ...] std deviations: [0.00708466 0.0063847 0.00740649 0.00944938 0.00763342 0.00751928 0.00737737 0.00689999 ...]

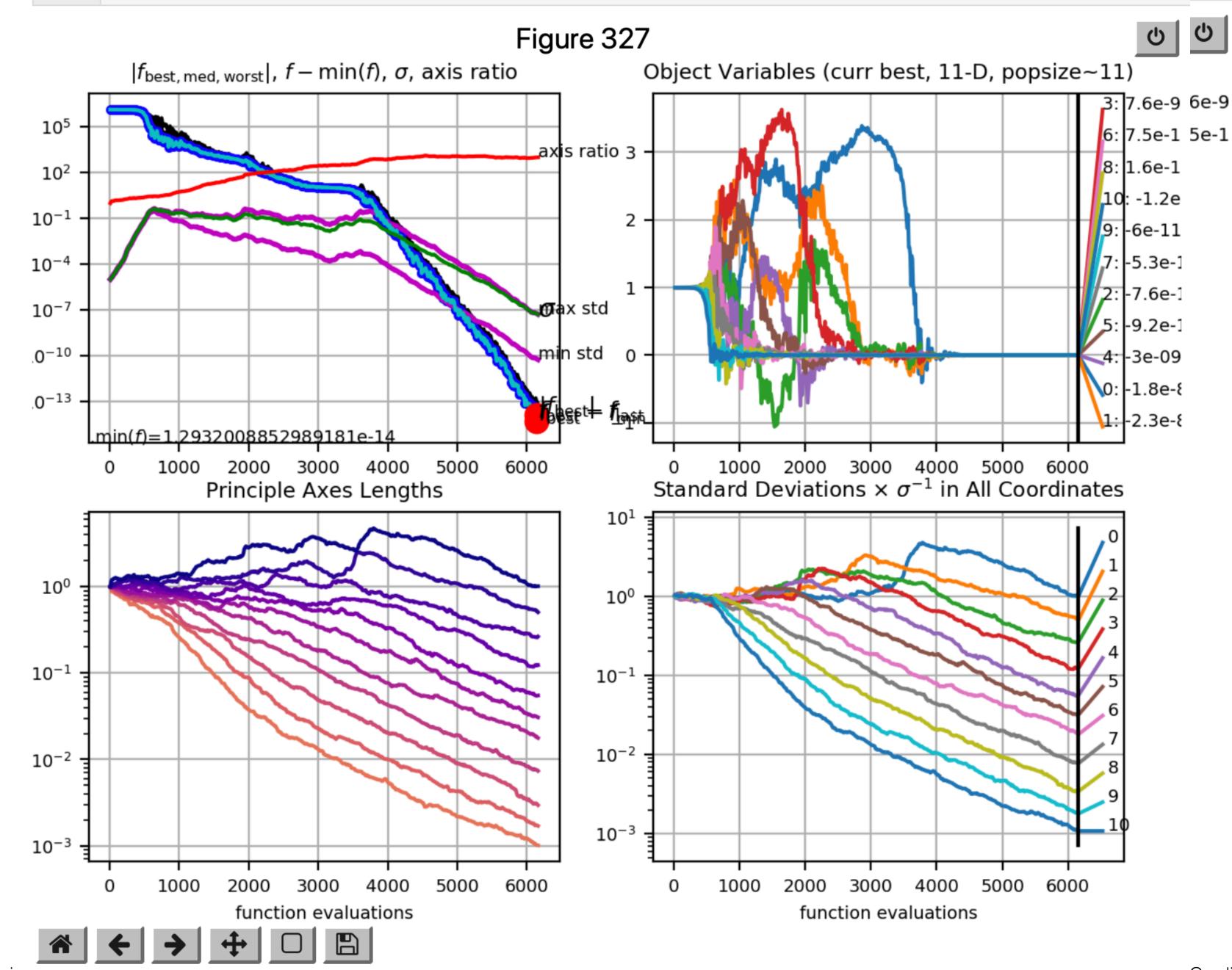
1 x, es = cma.fmin2(cma.ff.elli, 11 * [1], 1e-5, {'tolfacupx': 1e6})

Iterat #Fevals function value axis ratio sigma min&max std t[m:s] 100 200 300 400 500 560 termination on tolfun=1e-11 (Thu Jul 11 10:52:24 2019) final/bestever f-value = 9.862934e-15 9.862934e-15-1.63323394e-09 -3.73512722e-10 4.61670274e-10 -2.78078340e-10 ...]

Nikolaus Hansen, Inria, IP Paris

```
(5_w,11)-aCMA-ES (mu_w=3.4,w_1=42%) in dimension 11 (seed=942830, Thu Jul 11 10:52:23 2019)
         11 1.335419049661035e+06 1.0e+00 1.03e-05 1e-05 1e-05 0:00.0
         22 1.335398380223496e+06 1.2e+00 1.19e-05 1e-05 1e-05 0:00.0
         33 1.335379395340697e+06 1.4e+00 1.38e-05 1e-05 1e-05 0:00.0
       1100 4.999254215133446e+03 6.5e+00 2.01e-01 5e-02 2e-01 0:00.1
       2200 1.030349103924029e+02 9.9e+01 1.24e-01 4e-03 3e-01 0:00.2
       3300 9.939855671544342e+00 3.0e+02 3.53e-02 4e-04 9e-02 0:00.3
       4400 2.862006949075298e-04 1.1e+03 1.55e-03 6e-06 6e-03 0:00.4
       5500 2.373014204647906e-10 1.1e+03 3.30e-06 6e-09 6e-06 0:00.6
       6160 1.840635073907070e-14 1.0e+03 5.18e-08 6e-11 5e-08 0:00.7
incumbent solution: [-1.83502574e-08 -2.46920059e-08 -2.79112525e-09 1.76731134e-09
```


cma.plot()



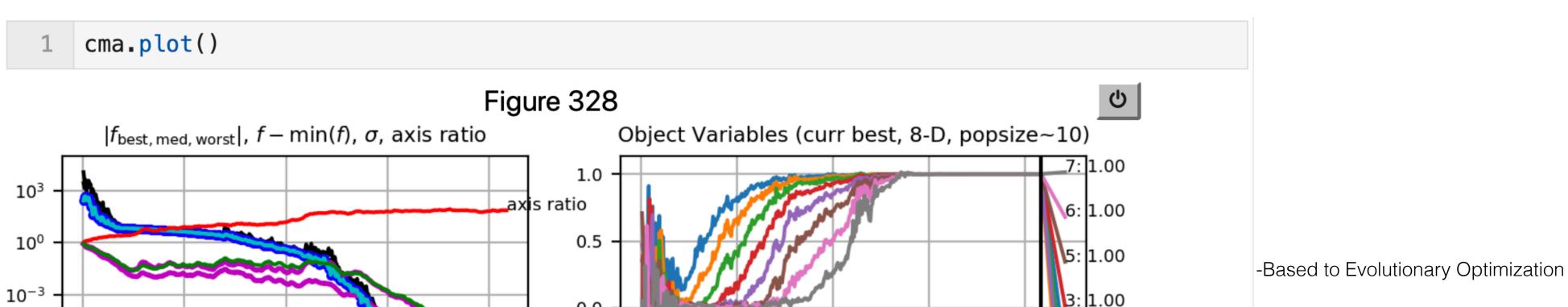
Nikolaus Hansen, Inria, IP Paris

<cma.logger.CMADataLogger at 0x7f90c02fd828>

A Transparent Interface

```
es = cma.CMAEvolutionStrategy(8 * [0], 1.0)
  while not es.stop():
2
      X = es.ask()
3
      es.tell(X, [cma.ff.rosen(x) for x in X])
4
      es.logger.add()
5
       es.disp()
6
  es.result_pretty();
```

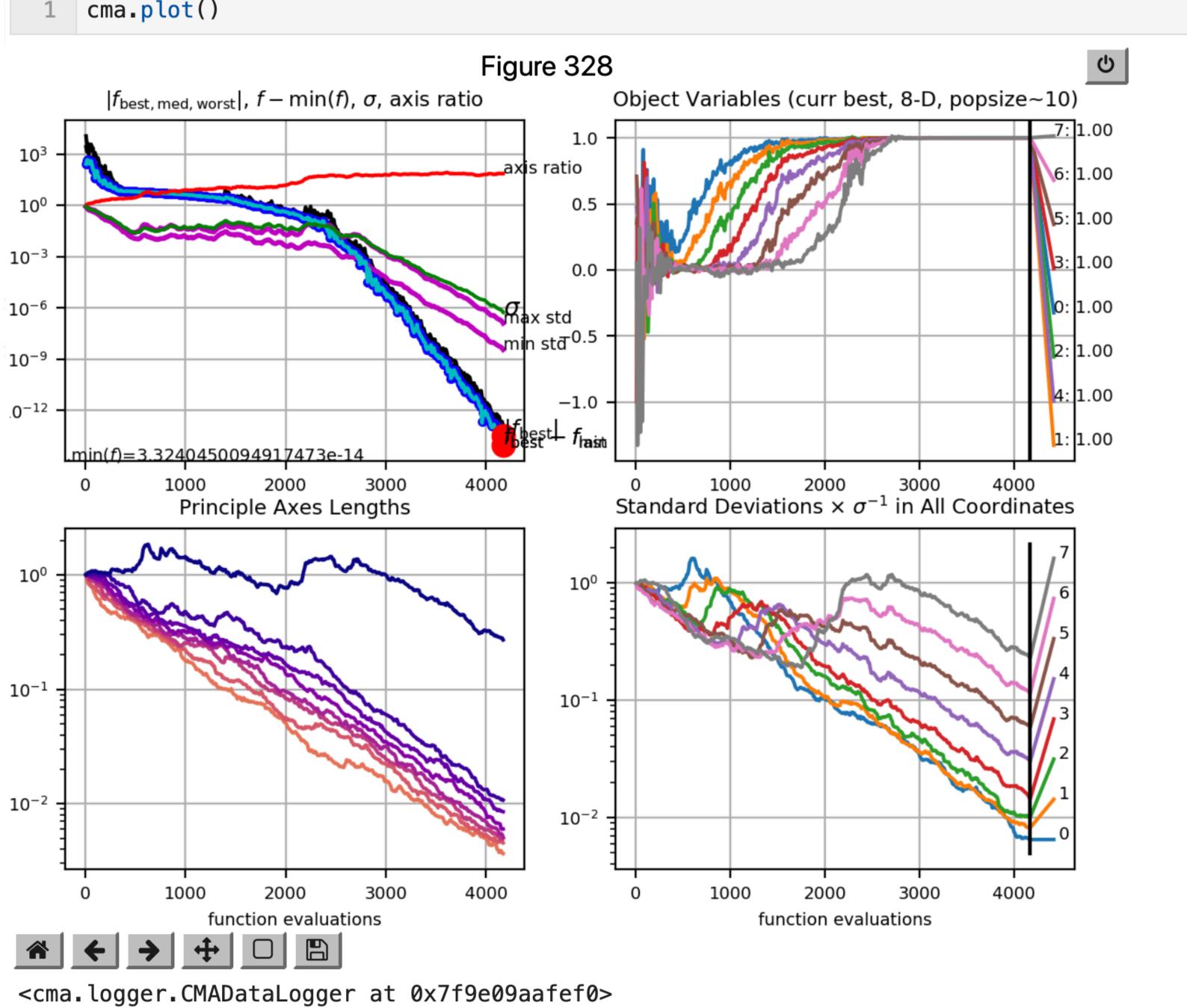
(5_w,10)-aCMA-ES (mu_w=3.2,w_1=45%) in dimension 8 (seed=610691, Sat Jul 6 20:59:48 2019) Iterat #Fevals function value axis ratio sigma min&max std t[m:s] 10 2.655345399152838e+02 1.0e+00 8.69e-01 8e-01 9e-01 0:00.0 1 20 4.505842690989847e+02 1.1e+00 7.90e-01 7e-01 8e-01 0:00.0 30 4.555527678670772e+02 1.2e+00 6.54e-01 6e-01 6e-01 0:00.0 3 1000 4.338593958650433e+00 8.1e+00 5.45e-02 2e-02 5e-02 0:00.1 100 200 2000 4.185334229855005e-01 1.5e+01 4.29e-02 4e-03 2e-02 0:00.2 3000 7.700486946188576e-06 6.3e+01 1.78e-03 6e-05 1e-03 0:00.2 300 4000 5.768459312593045e-13 6.5e+01 2.38e-06 2e-08 7e-07 0:00.3 400 4170 3.324045009491747e-14 7.4e+01 5.66e-07 4e-09 1e-07 0:00.3 417 termination on tolfun=1e-11 final/bestever f-value = 3.324045e-14 3.324045e-14incumbent solution: [1.00000000049914348, 1.0000000000632427, 1.0000000033696235, 1.0000000 043215198, 1.0000000018643387, 1.000000034016863, 1.000000062489975, 1.000000017143993] std deviation: [3.685091313595847e-09, 4.633054743103208e-09, 5.686358351473224e-09, 8.136 372446898455e-09, 1.692834679130827e-08, 3.2897094225652294e-08, 6.40728722918568e-08, 1.2 828702723990136e-07]



Nikolaus Hansen, Inria, IP Paris

On Object-Oriented Programming of Optimizers [Collette et al 2010]

cma.plot()



Nikolaus Hansen, Inria, IP Paris

Thank You

Nikolaus Hansen, Inria, IP Paris

